Showing posts with label flood map. Show all posts
Showing posts with label flood map. Show all posts

Risks Are Where You Map Them - The Truth in WYSIATI (What You See Is All There Is) When Defining Urban Riverine Flood Plain Risks

"To Map or Not To Map, That Is The Question"

If buildings along a channel are subject to frequent flooding but there is no regulatory mapping, is it really a 'flood risk zone'?

Risks are sometimes equated to the presence of regulatory mapping that defines risk. But risks exist whether you map and manage them or not. This post explores the "Where?" and the "How?" of floodplain mapping to best define risks.

First some background - regulatory mapping, such as under Ontario's Conservation Authorities Act regulations, delineates risk areas where it has been decided to map risks. It is a choice - to map or not to map. Regulation and risk are therefore quite different, as risk can extend upstream of the last flood plain mapping sheet, extending further up the river system, or even up through the urban landscape and infrastructure systems. Obviously, our goal in terms of risk management and urban flood damage mitigation would be to map all the important risks - those contributing to frequent or extensive damages - and to then develop a strategy to address those risks.

While Ontario is quite advanced in terms of the identification and management of river flood risks, there are opportunities for improvement where risks on smaller urban watercourses are defined. Traditionally, a catchment size limit of half a square mile, or about 125 hectares, was used to define rivers reaches where hydrologic and hydraulic modelling would be completed to delineate the extent of the regulatory flood plain. Reaches for smaller reaches were not typically mapped. In new development areas, a smaller threshold is often applied during land use planning and development servicing studies which ensures that local risk are managed. However in historical development areas, it is not uncommon that some river reaches with catchment sizes of several hundred hectares are not mapped, meaning that risks in small flashy systems (those that respond to high intensity rainfall convective summer storms) are not identified, regulated, or mitigated.

Given today's focus on Best Practices to mitigate existing community flood risks, the mapping of riverine flood risks is a subject of attention. The federal government, Natural Resources Canada and Public Safety Canada, have recently published a Federal Floodplain Mapping Framework Version 1.0, 2017 that forms part of the Federal Floodplain Mapping Guidelines Series - a link to that document is here :

http://publications.gc.ca/collections/collection_2017/rncan-nrcan/M113-1-112-eng.pdf

The following figure summarizes the framework steps.

The report notes priority setting including "where to conduct floodplain mapping"  as a future activity:
We encourage that Priority Setting be robust to answer the "where" and "how far" mapping will be pursued. Why? There is a considerable amount of focus on next steps, getting lost in the weeds with LiDAR data acquisition and climate change assessments in the next delineation step in the framework. So the question is "Is there enough prioritization relative to other technical considerations?", as suggested in the follow graphic:


How about an example showing why "Where to Map?" is more important than "How to Map?".

The Don Mills Channel is a small urban drainage channel, with a historically realigned watercourse called Cummer Creek in the Don River Watershed. Floodplan mapping has been pursued since the 1960's in Ontario and a great summary of floodplain mapping history is available here: The State of Floodplain Mapping in Ontario Presented to the Institute for Catastrophic Loss Reduction, June 15, 2007, Don Pearson, General Manager, Conservation Ontario.

The City of Markham is conducting a flood reduction Class Environmental Assessment study to understand the causes of flooding in the Don Mills Channel study area and to develop a range of alternative solutions to reduce flooding and flood damages. The Class EA flood risk analysis modelling (not the regulatory mapping) shows the extent of flooding during a 100-year event:


While the watercourse is an area of focus for flood control, regulatory floodplain mapping was completed for the channel only in 2011. Prior to that, estimation mapping was completed (by this post's author) to support generic regulation updates in 2006.

So how has the characterization of risks changed with this 'new' mapping of the Don Mills Channel?The following figures illustrate how building flood risks in the newly mapped Don Mills Channel compare with city-wide Markham building flood risks identified as part of its Flood Emergency Response Plan.

Extending floodplain mapping a one tributary can dramatically change the characterization of overall riverine flood risk for the 100-year flood event. 

Riverine flood risks defined by depth of flooding at building structures changes significantly with the extension of floodplan mapping to previously unmapped watercourse reaches.
Frequent flooding during low return period events increases significantly with the extension of floodplan mapping to the Don Mills Channel, a tributary of the Don River also called Cummer Creek.

The charts above clearly show that the accounting of at-risk buildings within the extension of regulatory floodplain mapping in a single tributary dramatically changes the characterization of city-wide risks.  For example, the number of high flood depth structures (depth greater than 0.6 metres) during a 100 year event in the new reach is more than double the entire previous city-wide number. For frequent flood events like the 10 year storm in the last chart, the number of high-depth structures increases by 10 times or more - these new, frequent, high-depth structures can be expected to represent a high proportion of average annual flood damages.

While development occurred in the Don Mills Channel area in the 1960's (channelization and realignment was in fact to support development at the time according to the original 1966 design report), floodplain mapping was not initiated until 40 years later with the generic regulation update estimation mapping (i.e., HEC GeoRAS considering only overland components and not culvert enclosures - see this post for our perspective on riverine flood vulnerability methods). Advanced mapping to support regulation was completed later in 2011.

So what was the critical question to defining risk? Was it "How?" the floodplain should be mapped, like using various hydraulic models:

1) basic 1-dimensional HEC-RAS with no culverts (the 2006 HEC-GeoRAS estimation) or
2) more advanced 1-dimensional HEC-RAS with culverts (2011 mapping) or
3) even more advanced 2-dimensional PCSWMM integrated with the municipal storm pipe network (2018 Class EA)?

.. or using various design storms to determine design flows like:

1) TRCA's low-intensity watershed storm, or
2) Markham's high-intensity urban storm

... or considering various climate conditions like:

1) today's climate and IDF curves (which are not reflected in the watershed storms at all) or today's regulatory storm (Hurricane Hazel) or
2) tomorrow's estimated climate and IDF curves (take your pick on methods ... none of which converge) or tomorrow's regulatory storm (Hurricane Hazel ... exactly the same as today's Hurricane Hazel)

.. or refining the digital elevation model using LiDAR to get those flood depths to millimetre accuracy around every metre of he perimeter of each building, instead of typical mapping?

A recent presentation describes the modelling uncertainties in "How" various analysis methods have been applied from the 1960's to today:




Or is the most important question in defining risk the "Where?" Yes, "Where?" is the important part and the other considerations of "How?" are secondary or tertiary at best.

***

Nobel laureate Daniel Kahneman, author of Thinking Fast and Slow, referred to WYSIATI, an acronym for "What You See Is All There Is", which is a way of saying that we often miss things by acknowledging only the things we know (the known knowns) while being oblivious to the unknown unknowns. We recognize only what we see - or what we map and acknowledge. In the case of flood plain mapping, the risks we map are often considered to be all there is, since that is all that is being regulated or managed. Obviously then, "Where?" and "If" we map riverine flood risks can be of critical importance. And although our technical methods for delineating flood risks must be carefully considered, "How?" we define risks is relatively less important.

BC Earthquake and Flood Hazard Zones - Natural Hazard Locations Key To Risk Management

BC Earthquake
BC Earthquake Risk Map
BC Earthquake
BC Earthquake December 2015 in High
Shake Hazard Zone
Location , location , location.

Was the December 30, 2015 earthquake in BC unexpected? No. It occurred in a high shake hazard zone as shown in the image to the left. Certainly risks can be managed when hazards are better known and policies are put in place to manage them.

Flood risks are like earthquake risks, as they are based on location.  For river flooding, floodplain maps show hazards due to high river flood levels.  This post shows the hazard zones maps available in BC.

Urban overland flood hazards can be predicted as well, beyond
regulated valley limits with river flood plain hazard zones.
We cannot predict where the next major storm will occur but the physical characteristics of the your location will put you in a hazard zone when and if that storm comes.

Calgary flooding was in a river flood hazard zone, known to be high risk, but ignored in terms of land use planning and flood plain regulation. Other urban flooding hazard locations have been thought to be difficult to map and manage, but research by CityFloodMap.Com shows those locations, beyond tranditional river valley flood plains, can be mapped as well - see image to right and our previous post on the details of analysis of Toronto flood events. Urban overland flood paths are like earthquake fault lines - you can't see them most of the time as they are usually inactive. And they both have wide areas of influence beside them - for overland flood paths this influence is because properties in the flow path are connected to many others by an underground sewer network - for fault lines the earth is connected.

Sometimes media get confused about location and assign risk from one area to another by mistake. In Toronto, when the GO Train was stranded in the Don River flood plain, the media, the train operator and the Environmental Commissioner of Ontario explained it as an unprecedented weather event, some linking it to climate change. How wrong.

Natural hazard reporting needs better
science in reporting causes.
In fact the record rainfall on July 8, 2013 that stranded the GO Transit commuter train was in Mississauga, in the Etobicoke Creek Watershed, several watersheds away from the Don River`s watershed. Rainfall in the East York area on the Don River Watershed recorded only 51 mm of rainfall according to the closest Environment Canada gauge - much less than the record 126 mm of rainfall in Mississauga`s Pearson International Airport.  The rail line was also in a high risk flood zone, not unlike "High River" Alberta was (and is).

More details on GO Train flooding are in a previous post. The following illustration shows how basic physical facts, including location, are ignored when reporting on the location of natural hazards and incidents:
BC Earthquake
Reporting on natural hazards should focus on basic facts, unlike the Toronto GO Train flood reporting that linked the stranded commuter train to record rainfall in a different watershed beyond the flooded Don River flood plain.
Location, location, location is important for assessing natural hazards and interpreting extreme rainfall.
Often media reports will not identify the spatial variability extreme rainfall, and may only have access to information available through Environment Canada which has a few active rain gauges (climate stations) that record short duration rainfall intensities.  The image above shows scattered Environment Canada stations. Below, more detailed City of Toronto data is explored.

Toronto Water, the group responsible for Environmental Assessment Studies that investigate flood causes and recommend solutions, summarized rainfall patterns for a Ward 11 community meeting on July 19, 2013 shortly after the July storm - recorded rainfall data is available from locations than Environment Canada sites. The presentation to the community showed very little to moderate rain recorded in the eastern part of Toronto, and few reported basement floods. The Don Watershed limits have been added to the a community meeting slide to show that only moderate rainfall was observed overall in the Don River Watershed.

Moderate rainfall in the Don River Watershed corresponds to an overall 5-10 year return period design event, with some Toronto gauges recording less than 2 year return period rainfall (19 mm) in the eastern part of the Don River Watershed, and some gauges on the western edge recording higher total.

As a result of the variable rainfall pattern The Toronto Observer reported that according to the Insurance Bureau of Canada, the Scarborough community was 'unscathed' by the July 8, 2013 event. This is supported by comments provided by Toronto Water in the report:

July 8, 2013 Storm Variability Toronto
Toronto Water received over 4,700 calls regarding basement flooding, but only 50 came in from Scarborough, said Ted Bowering, director of water infrastructure management for Toronto Water.

In Scarborough in fact the storm wasn’t all that intense. It was kind of like a normal summer thunderstorm,” he said. “So the impact was not that great at all.”

Flood reports vary after July 8, 2013 storm in Toronto. Less than 2% of
reported floods were from East Toronto (Scarborough). 
A City of Toronto staff report provides a less cluttered summary map of the rainfall variability and a summary table of reported flooding. The table shows less than 2% of reported flooding was in eastern Toronto, demonstrating the variability in rainfall severity.

Location can be miscommunicated even by the best managers. For example the TRCA summarized extreme rainfall events in Ontario and implied Mississauga rainfall was in Toronto and did not distinguish between watersheds where rainfall occurs and where it causes flooding:
Go Train flood toronto
Mississauga's CN Tower? Location matters in hydrology. Extreme rainfall is not evenly distributed and can be high in one watershed and low in another. This was the case for Hurricane Hazel and also the July 8, 2013 storm - both storm were light on east Toronto (including the Don River Watershed) and heavy in the western watersheds including those outside of Toronto.
Note: August 19, 2005 storm appears mislabeled as '2013'.
****

So location matters for natural hazard risks. Extreme rainfall is highly variable in terms of its spatial pattern. Sometimes local data, beyond that which is available from Environment Canada, can be used to assess the variability in rainfall across watersheds and drainage catchments,

****

To help assess flood risks, CityFloodMap.Com has created Canada-wide mapping of extreme rainfall trends so that risks of flooding due to higher rainfall can be assessed for 565 climate stations locations. Fortunately, this Environment Canada data shows that only a few percentage of the stations have a statistically significant increase in observed extreme rainfall. CityFloodMap.Com has also created tablular summaries of extreme rainfall trends, summarized by province.