Showing posts with label hydrology. Show all posts
Showing posts with label hydrology. Show all posts

Is Wild Weather and a New Normal for Severe Rainfall Responsible for Urban Flooding, or Urbanization and Hydrologic Stresses? Case Law Points to Urbanization Driving Runoff and Flood Effects.

Everyone has an opinion on the weather and media is saturated with stories linking extreme weather with flooding. It makes sense. Flooding happens during severe storms. The bigger the storm the bigger the flood damages in fact.

But media and groups including the insurance industry and some researchers have suggested that flooding and flood losses have increased due to changes in weather patterns characterized by increased intensity or frequency of rainfall events.

That is not true. And there is no data to support that explanation.

Why?

Because rainfall intensities have not changed according to official Engineering Climate Datasets that review and analyze trends in extreme rainfall to inform engineering design across Canada.

Some media are correcting this false explanation that new wild weather, or a new normal, is causing flooding, like the CBC.

The CBC Ombudsman has ruled that CBC News reporting violated standards of journalistic practice in reporting more 100 Year storms linked to urban flooding - see the scathing report. It begins:

"Review by the Office of the Ombudsman, French Services, CBC/RadioCanada of two complaints asserting that the articles by journalist Marc Montgomery entitled How to mitigate the effects of flood damage from climate change and Response to a climate change story, posted on September 19 and November 19, 2018, respectively by Radio Canada international (RCI), failed to comply with the CBC/Radio-Canada Journalistic Standards and Practices regarding accuracy and impartiality."

and regarding this claim in the article on changing storm patterns:

“We are experiencing storms of greater magnitude, more volume of rain coming down over short periods of time these days due to climate change. That is causing massive flooding.”

the CBC Ombudsman concludes that (my bold):

"One only had to examine the official Environment Canada data for Ontario as well as for the
entire country to acknowledge that the claim made in the article was inaccurate. Such
acknowledgement would at the same time have addressed the complainant’s criticism regarding
the lack of data to corroborate Dr. Feltmate’s claim about the increased frequency of extreme
rainfall events in Canada."

While Environment and Climate Change Canada have refuted insurance industry claims on storm frequency shifts in the past (see Canadian Underwriter correction on the IBC/ICLR Telling the Weather Story theoretical shifts mistakenly reported as real data).

Yet the insurance industry has continued to promote the 'causation', with opinion pieces (not any peer-reviewed paper or analysis) saying climate-change effects on rainfall drive flood losses. See Financial Post piece

If not rainfall, what causes more flooding, more flood damages?

Canadian courts have pointed to urbanization as a driver, as in the landmark case of Scarborough Golf Country Club Ltd v City of Scarborough et al.. The decision indicates that urbanization markedly increases runoff stresses that cause runoff, erosion and flooding. Some highlights:

i) "Expert evidence confirmed the effect of the city's rapid urbanization and water control plans on the creek." 

ii) "It is important to note that the case is not presented primarily as a complaint against flooding but rather that the markedly increased flows and increased velocity of flow have caused and continue to cause damage to the creek bed and the adjacent tableland.", and 

iii) "There can be no doubt that the storm sewer facilities and urbanization of the lands to the north of the Club are the cause of the effects just described and that the difference in flow and velocity of flow is very substantial." 

So urbanization markedly increases runoff, flows and velocities, while there are no observed changes in extreme rainfall. Mapping clearly shows the significant expansion of urban areas in southern Ontario municipalities - see post and images below:


The IPCC has reviewed the size and frequency of floods at larger regional scales in their extreme events report and noted limited to medium information to assess changes, also noting the effects of changes in land use and engineering (see page 8):

"There is limited to medium evidence available to assess climate-driven observed changes in the magnitude and frequency of floods at regional scales because the available instrumental records of floods at gauge stations are limited in space and time, and because of confounding effects of changes in land use and engineering. Furthermore, there is low agreement in this evidence, and thus overall low confidence at the global scale regarding even the sign of these changes."

IPCC notes low confidence in the sign of changes at a global scale, meaning flood magnitudes could be going up or down.

Other factors driving losses? Research shows for some severe weather event types like hurricanes the driver is GDP growth, e.g., "research is robust in concluding that, for many decades into the future, the primary driver behind increasing economic losses related to hurricanes is expected to be societal growth"  

More factors? Maintenance of infrastructure affects its performance and flood risks. For example, TRCA described that flooding of the Keating Channel and lower Don River, which affects Toronto's Don Valley Parkway was due to a lack of maintenance:

"Since its construction between 1914 and 1922, the Keating Channel has been subject to heavy sediment loads, requiring regular dredging to maintain sufficient depths to allow for and maintain shipping activities at the mouth of the Don River. Between 1950 and 1970, widespread development throughout the Don Watershed and the construction of the Don Valley Parkway increased sedimentation rates by up to four times that of the pre-was era. After 1970, decreases in the number of new watershed disturbances and improved sediment control structures likely contributed to the decline in sedimentation in the Keating Channel to levels similar to the pre-war era. A reduction in shipping activities within the Keating Channel, combined with restrictions on the open water disposal of dredgate imposed by the International Joint Commission (IJC) in 1974, resulted in a cessation of dredging in the Keating Channel. In the following five to six years, the Keating channel filled with sediment and debris to the point where it became visible under all but high lake levels, resulting in increased flood risk along the lower Don."

So flood risks increase due to fluviogeomorphology (the transport and deposition of sediments in a watercourse) and hydraulics - when dredging stops, sediment builds up, hydraulic capacity is reduced and flooding is increased along the river. 

Yet despite flooding dating back to the 1800's, as reported in the Inquiry for Premier Davis, and despite impacts on rail lines in the Don River floodplain over decades, flooding has been attributed to climate change effects. Even by the Environmental Commissioner of Ontario. The fact is there is no new normal with "wild weather", but the same old issues and extremes:



Hydraulics affect sewer system capacity and flood risks as well. Modifications to store sewage and prevent discharge to the environment can constrain capacity and contribute to higher back-up risks, as documented in approved Class Environmental Assessment Studies in Ontario. Call this "The Law of Conservation of Poop" - holding back sewage in the collection system to prevent overflows causes surcharge levels to rise, sometimes closer to basements, increasing basement flooding risks. The excerpt below from the Toronto Area 32 Municipal Class EA describes "Causes of Flooding" related to operation of the tanks installed to protect Lake Ontario and beach water quality:


And while stormwater runoff and sewage level are rising in storm and wastewater collection systems due to urbanization and hydraulic constraints, risks are being increased by lowering basements, exposing higher value finishing and contents to flood damages - in Toronto, the rate of basement lowering, tracked through Toronto Open Data building permits for foundation underpinning, has increased significantly as shown in this post. The chart below shows the data trends:


A new report "Canada’s Changing Climate Report" lead by Environment and Climate Change Canada confirms that there is no change in extreme rainfall in Canada based on observations (see Chapter 4) saying "There do not appear to be detectable trends ...":



This certainly contradicts claims made by an insurance industry-funded research group that have indicated there is 'a lot of data to show it' when it comes to bigger storms. A February, 8, 2018 presentation to the Standing Senate Committee on Energy, the Environment and Natural Resources included this statement:

"So when you see in the news and the media people talk about storms seem bigger and more intense and so forth, those perceptions are correct. And there's a lot of data to show it."

But a review in a recent presentation to the National Research Council's 2018 workshop on flooding that showed there is no data to support the statement. Concerns with insurance industry statements on frequency shifts were also expressed by Environment and Climate Change Canada staff in relation to the Telling the Weather Story 40 year to 6 year weather shift. Staff had concerns with statements that could confuse theory and actual changes. Here is an excerpt from communications regarding the Telling the Weather Story normal bell curve theory shift:

"The presentation looks to be a simple conceptual model for communicating the underlying idea – if one assumes a standard normal, then a shift in the mean implies an attendant change in extremes – which is fine as far as it goes. If this is used as the basis for statements about actual changes in extreme rainfall in Canada, then I would have concerns."

Here was the specific question posed:


Here is a graphic showing the theoretical shift in question, an arbitrary 1 standard deviation shift in a standard normal 'bell curve' (probability density function):


The Environment and Climate Change Canada report also speaks to theoretical shifts in probability density functions, like the Weather Story bell curve shift. This is the example showing a shift right in the distribution of extreme events Figure 4.2.1:

The reality is that in some regions when it comes to extreme rain intensities there is not a shift to the right but a shift to the left, meaning less extreme events, as shown in this annotated curve that reflects southern Ontario rain intensity shifts:


The 'green' shift to the left reflects an overall decrease of 0.4% in rainfall design intensities at 21 long term climate stations since 1990, considering durations related to urban flooding, i.e., 5 minutes to 24 hours. That analysis of the new Version 3.0 Engineering Climate Datasets was presented in this post.

There is often a statement that changes in means will lead to changes in extremes in a distribution of probabilities - this makes sense. This concept is reflected in IPCC reports as well:


But data shows that the means, the 2 Year storm rain intensities, the events that we have the most observations of and the most confidence in assessing trends are decreasing the most. The Version 3.0 datsets review for southern Ontario shows on average a drop of -0.8% in those rain intensities, as shown on this table in the first column:


In this region, the extremes can be expected to decrease along with the means - on average that is happening too for the 100 Year rain intensities.

The Environment and Climate Change Canada report notes 'medium confidence' in increases in annual precipitation across the country and "low confidence in quantifying regional or national total amounts of precipitation" - so medium confidence in it going up but low confidence in saying how much, especially at more local spatial scales, or regions.

Since little or no infrastructure is designed to address annual precipitation, the reports limitations on the annual precipitation statistic are irrelevant to cities facing challenges like urban flooding during extreme, short duration events. Based on CatIQ datasets, a higher number of flood claims and a higher value of claim is associated with rare storm volumes falling over duration of minutes and hours and not annual totals.

The key take-away is that extreme rainfall has not been observed to change, whether for higher frequency events like 2 Year storms, or for low frequency, rare events, like 100 Year storms.

It is easy for the media to confuse annual precipitation with rain extremes, and in the case of Canada’s Changing Climate Report, CBC News reported that urban flooding related to intense rain will increase too - CBC has since corrected that article noting the report did not find increased short-duration rainfall linked to basement flooding:


The Environment and Climate Change Canada report cites research that points to land use change having a "key role" in affecting flooding, for example for the southeast Prairies flood in 2014. Here is the excerpt on attribution of flooding to rainfall or other factors, saying "Anthropogenic influence may have influenced rainfall, but landscape modification played a key role in increased runoff":



This is consistent with reporting by the American Society of Civil Engineers who in their Adapting Infrastructure and Civil Engineering Practice to a Changing Climate document state: "It is important to point out that land-use changes (e.g., urbanization) can result in substantial flooding impacts, independent of climatic forcing functions." - see page 12.

Regarding attribution, it is also consistent with a recent report on extreme rainfall event attribution that also identifies a lack of association of extreme convective storms, those responsible for much urban flooding, with anthropogenic climate change effects. For example the National Academies of Sciences, Engineering, and Medicine. 2016 report Attribution of Extreme Weather Events in the Context of Climate Change states (see page 97):

"Studies of trends in the United States find different results depending on the time period and spatial region chosen, but there is no broad agreement on the detection of long-term trends in overall severe
convective storm activity such as might be related to anthropogenic climate change."

Regarding land use influence on runoff and flood risk, this is also consistent with analysis by the University of Guelph's Engineering Department on changes in urban 'runoff coefficients' (the fraction of rain that runs off and can contribute to flood stresses) due to urbanization like in the Don River watershed:



That analysis was intended to 'disentagle' the impacts of climate change and land use change. Green bars are pre-urbanization coefficients showing we had a small fraction of rain becoming runoff, while blue bars show significant increase in runoff potential after 50% urbanaization. Note there is uncertainty in flow monitoring too, just like in precipitation monitoring, but we see a 10 times, 1000% increase in runoff potential in summer months, when we have the highest rain intensities, due to urbanization. The urbanization effects are MASSIVE - the Scarborough Golf court case reiterated this fact over and over referring to "markedly increased flows".

Compared to urbanization effects on flows, meteorologic effects are a big "nothing burger", with no observed changes and just a lot of theory and speculation. We should design for uncertainty in the future, and incorporate cost-effective adaptation considerations or flexibility for future adaptation (ASCE's Observational Method for climate adaptation) however we should not mischaractierize past trends and risk factors driving today's infrastructure performance limitations.

The University of Guelph analysis also indicates that spring peak flow rates will decrease with climate change effects that reduce winter snowpacks and spring melt flood potential. The follow chart shows the decrease in spring peaks in the rural Moira River watershed:


The Environment and Climate Change Canada report recognizes the impacts of temperature on snow patterns in Chapter 4: "As temperatures increase, there will continue to be a shift from snow to rain in the spring and fall seasons.". The report also cites research that "The reduction in spring snow pack and the ensuing reduction in summer streamflow in British Columbia have been attributed to anthropogenic climate change". Other cited research notes "Such a change in the form of precipitation, from snow to rain, has profound impacts in other components of the physical environment, such as river flow, with the spring freshet becoming significantly earlier." - the University of Guelph research shows that the winter period flows increase from November to early March in the Moira River example, and the peaks decrease significantly from late March and April. This decrease in peaks will result in a decrease in spring flood risks in watershed affected by such events.

So there is no new wild weather, or new normal driving flood damages. Case law in Ontario defining the effects of hydrology, or urbanization, findings of inquiries into Don River flooding for Premier Davis, Municipal Class Environmental Assessment studies investigating basement flooding causes and solutions, and Environment and Climate Change Canada's Engineering Climate Datasets that examine trends in observed rainfall intensities show us that hydrology, hydraulics, fluviogeomorphology explain today's flood risks, and there is has been no shift in rainfall intensities, despite median and insurance industry 'weather stories' and claims.





Toronto Overland Flood Visualization Using ArcScene - Hydrology and Hydraulics in Urban Areas Explain Reported Flood Risk

CityFloodMap.com overland flood risk analysis across the City of Toronto has been used in ESRI's ArcScene software to visualize at risk neigbourhoods and vulnerability zones where the correlation of urban overland / pluvial flooding and surcharged sanitary sewers resulting in basement flooding has been established. Flood risks exist beyond large regulated valley systems with a continuum of risk existing from river flood plain to individual building floor drain.




Additional visualization below includes identification of building structures within the estimated overland flood risk zone.



TVO Articles on Climate Change, Extreme Rainfall and Urban Flooding Omit Basic Fact Checking and Ignore Fundamental Engineering Principles

I have posted comments on three TVO Articles on the topic of climate change, extreme weather, urban flooding and resiliency of Ontario Cities. Readers of this blog will be familiar with the content. It gets a bit repetitive from article to article, only because the data gaps are the same old ones we always see on these topics.  BONUS: a recent TVO broadcast is reviewed at the end of this post.

1) How climate change is making storms more intense, Published on Apr 21, 2017 by Tim Alamenciak

https://tvo.org/article/current-affairs/climate-watch/-how-climate-change-is-making-storms-more-intense

My Comments:
This is absolutely incorrect. Environment and Climate Change Canada (ECCC) published in Atmosphere-Ocean in 2014 that there is "no detectable trend signal" in the Engineering Climate Datasets related to short-duration rainfall that causes urban flooding:


Windsor has the lowest level of service for floodplain protection (100 year storm) while other regions have Hurricane Hazel (over 500 year storm) - so Windsor / Essex region will flood a lot more that other places. Also Windsor has been effectively tightening up their sanitary sewers to prevent spills to the river (reduced combined sewer overflows (CSOs)) which means more stays in the sewers and can back-up basements in extreme weather. Its a tough trade-off when environmental protection (keeping sewage out of the river) means more sewage in basements.

This is a recent summary of ECCC data as well as studies my Ontario universities and major engineering consultants saying decreases in extreme rainfall in Ontario. In fact there are twice as many statistically significant decreasing trends as increasing ones in southern Ontario (per the version 2.3 Engineering Climate Datasets - links to ECCC data files are all provided on the slides:


This presentation to the Ontario Waterworks Association and Water Environment Association of Ontario's Joint Climate Change Committee does extensive myth-busting related to extreme rainfall and flooding and explore the true drivers to increased flood events (spoiler-alert: its engineering hydrology and hydraulics, not meteorology). It also shows how the Clausius-Clapeyron relationship (theory relating temperature to extreme rainfall) has been disproved by research at MIT, Columbia and the University of Western. Unfortunately, there are lot of opinions and high level statements that are made without data. This is a pervasive problem in the media. When fact checking does occur, Advertising Standards Canada, the CBC Ombudsman and Canadian Underwriters have all agreed that there is no change to extreme rainfall. Here are some examples of that:

More data / facts / details:

Windsor decreasing extreme rainfall trends (Engineering Climate Datasets version 2.3 Station ID 6139525) - decreasing for ALL storm durations, and statistically significant decreases for durations of 10 minutes, 2 hours, 6 hours and 12 hours:


CBC Ombudsman confirms with ECCC, and disputes insurance industry statements that we have more storms (see letter to me):

http://www.cityfloodmap.com/2015/10/bogus-statements-on-storms-in-cbcnewsca.html

That was in response to this story that had no fact-checking:


And which had this correction made based on ECCC and real data: "However, Environment Canada says it has recently looked at the trends in heavy rainfall events and there were "no significant changes" in the Windsor region between 1953 and 2012." Canadian Underwriter editors dispute insurance industry statement on more frequent / severe storms after fact-checking with ECCC:


"Associate Editor’s Note: In the 2012 report Telling the Weather Story, commissioned to the Institute for Catastrophic Loss Reduction by the Insurance Bureau of Canada, Professor Gordon McBean writes: “Weather events that used to happen once every 40 years are now happening once every six years in some regions in the country.” A footnote cites “Environment Canada: Intensity-Duration-Frequency Tables and Graphs.” However, a spokesperson for Environment and Climate Change Canada told Canadian Underwriter that ECCC’s studies “have not shown evidence to support” this statement."

We can explain most increased flooding by hydrological changes over the past 100 years (same rain a before but more runoff than before as urban areas have expanded drastically across GTA watersheds over the past 60 years):

http://www.cityfloodmap.com/2016/08/urbanization-and-runoff-explain.html

... and specifically here is are the changes in hydrology in southern Ontario cities including the Windsor area:


We can also explain increased flooding with hydraulics related to municipal drainage design (tanks to hold back water and protect beaches can back up into basements like in my Toronto "Area 32" engineering flood study report), and related to overland flow in 'lost rivers' that statistically explain the highest concentrations of reported basement flooding:


Basically, hydrologic stresses have increases (more runoff) and conveyance capacity has decreased (reduced CSO relief, tanks to protect beaches, blocked overland flow paths in old 'lost rivers'). Underpinned/excavated basements are now lower than before, closer to the crown of the sewer pipes in the street and more prone to sewage back-ups than before, with no change in rainfall extremes due to climate change.

Robert J. Muir, M.A.Sc., P.Eng.

Toronto


2) How climate change is already costing you money, Published on Nov 01, 2017 by Patrick Metzger

https://tvo.org/article/current-affairs/climate-watch/how-climate-change-is-already-costing-you-money

My Comments:

There are many false statements in this article and a lack of basic science, statistics or critical engineering considerations. I am a licensed Professional Engineer with extensive experience in extreme weather statistics and municipal infrastructure planning and design (26 years) - this article is like 100's of others, skimming the surface and missing the critical data and conclusions, reinforcing stale pundit talking points in the climate-change-echo-chamber. Please see below for what is wrong with the article.

Firstly, the article conflates climate and weather which have different temporal scales. Climate includes rainfall and precipitation over seasons, years and decades while weather related to flooding in urban areas involves rainfall over minutes and hours. So the cited increase in precipitation is irrelevant to urban flooding and insurance since precipitation trends over months and years do not govern the performance of infrastructure systems (storm sewers, sanitary sewers, drainage channels and overland flow paths) - that infrastructure is governed by extreme rainfall rates over minutes and hours. It is an undeniable engineering fact. And these short duration rainfall intensities are 'flat' across Canada according to Environment and Climate Change Canada, as published in Atmosphere-Ocean in 2014 - in fact ECCC stated that some regions have decreasing trends including the St Lawrence basin in Quebec and the Maritimes.

My own fact checking of the Engineering Climate Datasets (version 2.3 on the ECCC ftp site) shows twice as many statistically significant decreases in southern Ontario as increases, and for the critical shortest durations, no statistically significant increases at all. Here is a review of the typical insurance industry statements and the real data:


Over the past two weeks I have correspondence from 3 scientists at ECCC stating that the annual precipitation statistic (climate) is irrelevant to urban flooding and the short duration rainfall (extreme weather) is what we should be looking at - across Canada the relevant data shows 'no detectable trend signal'. TVO should check the background of those providing information for these articles to see if the academic and practical experience aligned with the technical topic being discussed.

It is too easy to just try and may headlines and exercise 'availability bias', 'anchoring bias' and other problem-solving short cuts with discussing extreme weather and flooding. It is more responsible to look at real data and fact-check articles because there is important public policy on climate adaptation and mitigation that relies on the proper characterization of the problems that we are solving. Blaming flooding on rainfall trends misdirects resources to mitigation when it should be focused on adaptation to yesterday's extremes (due to intrinsic design limitations in 50-100 year old infrastructure and land use planning). Chief economists at major banks have repeated IBC statements on extreme weather shifts with no fact checking whatsoever - the Sun, the Star, CBC and individual insurance companies have repeated it too without checking. They have been fact checking with ECCC recently though and the consensus is that there is no shift in extreme rainfall and IBC mixed up a theoretical future shift (of an arbitrary 'bell curve' no less) and had reported it extensively as a past observation by ECCC. ECCC has denied that their data shows any increase in severe weather with climate change.

Some examples of ECCC refuting insurance industry claims:

Ombudsman confirms with ECCC, and disputes insurance industry statements that we have more storms (see letter to me):


That was in response to this story that had no fact-checking:

http://www.cbc.ca/news/canada/windsor/more-than-half-of-homeowners-insurance-claims-stem-from-water-damage-broker-says-1.3291111

And which had this correction made based on ECCC and real data: "However, Environment Canada says it has recently looked at the trends in heavy rainfall events and there were "no significant changes" in the Windsor region between 1953 and 2012."

Canadian Underwriter editors dispute insurance industry statement on more frequent / severe storms after fact-checking with ECCC:


"Associate Editor’s Note: In the 2012 report Telling the Weather Story, commissioned to the Institute for Catastrophic Loss Reduction by the Insurance Bureau of Canada, Professor Gordon McBean writes: “Weather events that used to happen once every 40 years are now happening once every six years in some regions in the country.” A footnote cites “Environment Canada: Intensity-Duration-Frequency Tables and Graphs.” However, a spokesperson for Environment and Climate Change Canada told Canadian Underwriter that ECCC’s studies “have not shown evidence to support” this statement."

Lastly, the Clausius-Clapeyron relationship linking temperature to extreme rainfall have been shown to not hold up based on real observed data. This is a review of those findings in studies from MIT, Columbia and University of Western (in London and Moncton trends are flat, while in Vancouver there is less extreme rainfall at higher temperatures):


Its time for a lot more basic fact checking on climate change, extreme weather and flooding. There is too much 'thinking fast' and not enough 'thinking slow', as shown in this review of media reporting biases through the lens of Kahneman:

http://www.cityfloodmap.com/2015/11/thinking-fast-and-slow-about-extreme.html

Unfortunately, as Kahneman puts it ""People are not accustomed to thinking hard, and are often content to trust a plausible judgment that comes to mind.", American Economic Review 93 (5) December 2003, p. 1450

"Only the small secrets need to be protected. The big ones are kept secret by public incredulity."(attributed to Marshall McLuhan) .. .so true, especially when we rely on infographics and slogans and ignore basic data in our reporting.

Robert J. Muir, M.A.Sc., P.Eng.
Toronto


3) How Ontario cities battle climate change, Published on Dec 01, 2015 by Daniel Kitts

https://tvo.org/article/current-affairs/the-next-ontario/how-ontario-cities-battle-climate-change

My Comments:

Mr Adams is correct is questioning Mr Kitts 'facts'. Because the official national Engineering Climate Datasets show no detectable trend in extreme rainfall in Canada. This was published in Atmosphere-Ocean in 2014 and looks at the critical short duration rainfall rain intensities that drive urban flooding. Here is a review that explore that national data in detail, drilling down to Ontario and southern Ontario trends and showing why insurance industry statements on higher weather frequency shifts were exposed to be 'made up' (confusing arbitrary future predictions with past observations):


Citing IPCC is irrelevant in the context of urban flooding in Ontario cities .. IPCC's definition of 'heavy rainfall' is the 95% percentile of daily rain with in Toronto is about 29 mm of rain - that is big for 'climate' but tiny for 'weather'. Typically storms have to be 3 times that big to cause urban flooding and most new communities are designed to handle 100-year design storms with built-in resiliency measures / safety factors to handle larger storms (if we see a hockey stick and get more extreme rain in the future).

Recently I made presentation to the Ontario Waterworks and Water Environment of Ontario's Joint Climate Change Committee on city resiliency and adaptation. In it there is wealth of basic media myth-busting many would benefit from. It includes explanations of why we have more flooding from a quantitative engineering perspective, exploring hydrologic stresses and intrinsic hydraulic design limitations in 50-100 year old infrastructure and land use planning:


It shows for example that 2017 Lake Ontario levels, while above average, were not very extreme looking back at 100 years of record (we exceeded past records by about 5 cm in some months which is naturally what happens with longer and longer records and the updated operating 'rule curves' for the lakes). It shows that the Richmond Hill GO Train was flooded in 1981 (just like 2013) in the exact same spot, even though the Ontario government suggests the 2013 flood was due to climate change. It shows that during the highest short duration rainfall recorded in Toronto in 1962 there was extensive basement and roadway flooding (this is not a new phenomenon at all). It shows numerous studies at the University of Guelph, University of Waterloo and major engineering consultants that Ontario extreme rainfall in decreasing and that extreme rainfall is not coupled to temperature changes. It shows significant urbanization in Oakville, Burlington and the rest of the Golden Horseshoe wince the 1960's and how we have paved up to the upper limit of the Burlington escarpment headwater watershed in that time - its hydrology that explains the increased flooding, not meteorology! This blog post shows the drainage paths in Burlington a little better than the OWWA WEAO presentation at the link above:


These change in hydrology and runoff potential are undeniable and dwarf any noise in the extreme rainfall statistics. The 'new normal' is in fact the 'old extremes' that we have always had .. the system response is more severe however with greater runoff into the same 50-100 year old infrastructure and confined channels along the lower portions of our watersheds. When it comes to urban flooding, only Milli Vanilli 'Blame it on the Rain'. Nobody cares about hydrology. Canada's greatest hydrologist Vit Klemes once lamented about this saying If you have not read it, please see his key note address to International Interdisciplinary Conference on Predictions for Hydrology, Ecology, and Water Resources Management: Using Data and Models to Benefit Society, entitled "Political Pressures in Water Resources Management. Do they influence predictions?"


Basically you could say that today on Ontario it is not unlike the communist Czech Republic that Dr Klemes describes in his address, where predictions (climate change) becomes prescriptions, despite the facts and data. And the media is so far out of touch that we cannot put the
genie back in the bottle and the government is playing along pretending to help solve problems while ignoring true causes.

As our Dr Klemes spoke in Prague:

"[the theorists] find it easier to play trivial scenario-generating computer games while the [managers] find these games much easier to finance... And so by happy collusion of interests, an impression is created that 'something is being done for the future' while the real problems are quietly allowed to grow through neglect of the present"

That is 100% correct. We are ignoring the present risks of today related to hydrology and blaming our flood problems on a climate change computer game (Weather Zoltar if you will). RIP Dr Klemes .. I still remember your guest lecture in our undergraduate class and wish you were around to speak truth to power on this topic.

TVO you have to raise the bar on this topic and demand basic fact checking especially given ECCC statements, corrections by Advertising Standards Canada, CBC Ombudsman, Canadian Underwriters ....

Robert J. Muir, M.A.Sc., P.Eng.
Toronto

***

Recently TVO aired a segment on extreme weather reporting and examined temperatures submitted by a viewer to show that Ottawa maximum temperatures have been decreasing using WeatherStats.ca data. See broadcast: https://www.tvo.org/video/climate-accuracy-activism-and-alarmism, and the transcript: https://www.tvo.org/transcript/2550125/climate-accuracy-activism-and-alarmism. This chart was questioned:


The TVO panelists could not comment on the source of the chart and dismissed it (even through the viewer had supplied TVO with the source). One panelist presented a chart on average temperatures (not maximum values) over a shorter period and seemed to imply that any Ottawa trends were an anomaly. Here is that chart:



What does the TVO panelist chart miss? Maximum temperatures. The hot decades in the early 1900's. The following chart is based on Environment and Climate Change Canada's homogenized and adjusted data - they do not produce annual maximum daily temperatures so this picked the highest daily temperatures for each year, just like the TVO viewer charted using WeatherStats.ca data. Here is the official data maximums:



Note: title station number is 61005976 is corrected (previous version indicated 6105967) - May 7, 2022

There is the same pattern and decreasing trend that the TVO panels dismissed! Maybe instead of inviting just lawyers and doctors as its panelists TVO could invite some engineers to comment on data that is most relevant to our profession?

The following chart shows that for all Ontario stations with trend data available summers are not warming as much as the winters - and Octobers are getting colder.




In Ottawa, data from the Ontario Centre for Climate Impacts and Adaptation Resources shows winter temperatures increasing, driven by the minimum increasing (as noted in a previous post):


Winter temperatures have increased with climate change - Ottawa, 1939-2016

Yet summer maximum temperatures have not increased at all (centre chart) - the mean (left chart) is increasing due to the minimum (right chart) increasing:



Other locations across Ontario have decreasing annual maximum temperatures since the 1930's as well. In Toronto the moving average 30 year annual maximum temperatures have decreased since the 1920's - the periods including the 1930's had high maximum temperatures:

Note: legend updated label series May 7, 2022

Some Toronto temperatures changes may be explained by urban heat island (UHI) effects, meaning heat is absorbed by urban structures and surfaces, and is stored and radiated back. Research at the University of Toronto has suggested that UHI explains a portion of the temperature increase by comparing trends with other rural climate stations not affected by UHI (see Tanzina thesis 2009). Tanzina summarized trends in temperatures by season showing that summer warm days decreased at many Toronto-area stations (highlighted climate stations):



What about across Canada? Other major cities such as Calgary have had decreasing annual maximum temperatures trends as well. This chart shows data from weatherstats.ca which no increase in maximum temperatures:


Environment and Climate Change Canada's homogenized and adjusted data for Alberta show a trend similar to Ontario, meaning warmer mean temperatures due mostly to warmer winters and not summers. These are mean temperature trends by month:




So summers are slightly warmer considering the mean and warmer minimums. But the maximum temperatures in summer (July) have DECREASED, and so have October and November maximum temperatures:



So the month with the highest temperatures is having a decrease in maximum temperature. The chart at right shows climate normals for Calgary, with July temperatures being the highest. This is good news that maximum temperatures in the hottest month are declining according to the official national climate datasets.

Ross McKitrick found some similar trends looking across Canada: https://www.rossmckitrick.com/uploads/4/8/0/8/4808045/temp_report.pdf

Some of his take-aways:

"4. Over the past 100 years, warming has been stronger in winter than summer or fall. October has cooled slightly. The Annual average daytime high has increased by about 0.1 degrees per decade. 72 percent of stations did not exhibit statistically significant warming or cooling.

5. Since 1939 there has been virtually no change in the median July and August daytime highs across Canada, and October has cooled slightly."

***
How about a look at July maximum temperatures in the Toronto area? Are summers getting hotter?

The adjusted and homogenized data are available from Environment and Climate Change Canada: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html

To review, follow the "Surface air temperature" link and download the monthly data, i.e., the file Homog_monthly_max_temp.zip that includes all station data. The data can be evaluated to show trends over 100+ years in several cases.

The following chart shows the maximum daily temperatures in July, averaging all days, for climate stations in Welland, Vineland, Hamilton, Toronto, Peterborough and Belleville including records up to 100 years (2019-2018):

Toronto Maximum Temperatures Climate Change


The Station IDs and names are as follows: 6139148,VINELAND; 6166415, PETERBOROUGH; 6158355, TORONTO; 6139449, WELLAND; 6150689,BELLEVILLE; and 6153193,HAMILTON.  Three stations have decreasing temperature trends and three have increasing trends. On average, over 100 years, the maximum July temperatures have increased by 0.17 degrees Celsius for these six stations.



Climate Adaptation in the Age of Weather Zoltar (A Short Story on Water Infrastructure Design Limitations and Uncertainty)

What if a "Weather Zoltar" machine answered
all our questions on future climate change
conditions - would we know what to do with
that precise detailed data?
 Are our current decision making processes even
sophisticated enough to make use of it?
The pursuit of extreme weather resiliency and climate change adaptation technical tools and planning / management approaches for core public infrastructure requires a broad review of industry practice and commonly held assumptions about adaptation needs that have been held as tenets. Many of the assumptions do not hold up to scrutiny upon review of fundamental economic and technical data. Some assumptions are overly simplistic and do not recognize the diversity of systems and system components in real-world planning and design environment - the diversity is wide, ranging from newer systems with negligible existing or future climate risks due to inherent design safety factors, to older systems with significant existing risks and fundamental physical and economic constraints to adaptation. The review of newer and older systems and their components and their existing and future risks will help focus the identification of knowledge, technical tool and planning / management framework gaps on areas with the highest risk and highest benefits associated with adaptation efforts.


“Do I really look like a guy with a plan? You know what I am? I'm a dog chasing cars. I wouldn't know what to do with one if I caught it! I just do things.” The Joker in The Dark Knight


It is important that engineers don’t ‘just do things’. If they plan to adapt infrastructure systems to any changes in societal requirements, whether environmental or economic, or to modify approaches to planning and design, there should be a sound basis. Unlike Jokers, they don't 'just do things'.


Imagine the car is future climate and weather details, and the engineering and scientific community is the dog. Imagine if future 5 minutes rainfall intensities and temperatures across Canada were now predicted with exact certainty on a fine 10 m grid across Canada out to the year 2100 and all hydrologists, musicians, municipal engineers, and hydrogeologists were all given the complete future data.  What would they do with it? What would be the plan with this new data? Would they have a sound basis to adapt their practice to this data? Evaluating what they would do with this data can help us review assumptions about systems and system components and explore other fundamental uncertainties in planning, analysis and design.


The Hydrologist


The hydrologist could do things with the minute-by-minute future weather data. Like quickly screen for major events and use some coarse existing hydrologic and hydraulic tools to prevent damages with exact military precision. He would aggregate future rainfall data on a broad catchment basis for his existing hydrology models, and silently curse the fact that he has to now load different storms for each catchment (because he feels that it is less conservative that hitting all catchments with the same intensity peak all at once).


The hydrologist would do his first modelling for areas upstream of known river flood hazards, e.g., Special Policy Areas in Ontario that have big historical and exiting weather flood risks. He would use his steady state river hydraulic model to predict floods levels to the centimetre and get the GIS department to plot the flood limits (but not until after they debate the difference between the hydraulic model elevation benchmarks and the GIS digital elevation model benchmarks) and he would then coordinate with emergency services, engineers and utilities to reinforce existing infrastructure components in the predicted floodplains, and safely evacuate residents and businesses well in advance of each event. He may communicate future flood levels to all property owners in the flood zones and using this information, some owners may or may not flood-proof their properties, depending on whether their insurance policy will cover damages and depending on the benefit/cost of flood-proofing efforts.


After the first flood event, it will be revealed from crowd-sourced drone video footage that the hydrologist’s models were not perfect - in fact the hydrologist ‘rounded down’ to AMC II conditions in the hydrology model to predict peak flow, underestimating the actual antecedent moisture before the first flood, instead of the wet-antecedent condition AMC III model which he thought was too conservative. The hydrologist also argued that the hydrologic model was actually calibrated with smaller storms so he never really had a hope of matching actual storm flows for a large event exactly anyway. The hydraulic model was also not perfect. It overpredicted levels in some areas an underpredicted levels in others, even once the actual vs. predicted flow discrepancies were factored out. Underpredicted model levels were later attributed to culvert grates clogged with debris during the flood that raised actual levels in some locations. The hydrologist argued that the model hydraulic model should not be blamed for these operational issues in the real world system. Also, several cars, picnic tables, pedestrian park bridges, and large dumpsters washed into some large urban channels and clogged culvert openings, raising actual flood levels above those predicted. In some ‘flat’ river reaches the hydraulic model underpredicted the flood level because the model incorporated ‘ultimate roughness’ values to characterize the overbank flow areas that were much higher than the existing values. Lastly, operation of a couple small dams may not have occurred exactly as predicted in the model. You win some you lose some.


Some roadways will wash out during the flood and a provincial inquiry would be held to determine who was responsible. Justice Riviere will conclude that in many cases the flood exceeded the design capacity of the roadway and so wash outs could be expected. He’d struggle with the definition of a ‘dam’ because expert witnesses representing municipalities argue that road embankments are not dams. The railway companies would hire the most expert of experts and argue their embankments are not dams either. In the end, Justice Riviere would recommend mandatory screening of roadway embankments for dam safety based on semi-quantitative risk assessment (like Ontario did for Drinking Water Source Protection) to be developed by a group of provincial ministries and newly conceived Flood Protection Boards. We would wait a long time for the regulations, director rules and guidance documents under the new Ontario “Roads are dams. Yes, it’s a ‘Thing’ “ Act.  The hydrologist would retire well before this inquiry was over.


The Musician


The musician would write songs about the drought of 2041-45, rhyming ‘dust’ with ‘rust’, and  the great Flood of ‘67, quietly wishing for an earlier flood year, like one with more long vowel sounds to draw out like ‘49 - or a ‘54 flood, “that would be much better alliteration - flood o’ fifty-four” he mused. Hearing about the upcoming droughts, the musician’s brother would open a successful lawn painting business like they have in Las Vegas.


Municipal Engineers


Municipal engineers would talk to their managers about upcoming training in Banff to attend a 1-month symposium to learn about how to download the new future data sets, how to do statistical analysis on it, and how to consider it in updating design standards. Why Banff? Its beautiful and everyone can go on nice hikes after the sessions of course. And that funny musician who sings about future weather events will be there too for entertainment on the ‘ice-breaker’ opening night. They heard his repertoire includes old stuff like When the Levee Breaks, but a nice acoustic version. Why statistical analysis? Because most undergraduates have limited competence in this and many practitioners do not use statistics, but rather apply simple conservative fixed, deterministic design values in their everyday practice. It would be worthless trying to apply the future data without considering the variability.


Municipal Engineers’ Managers


The municipal engineers’ managers would go to Banff, not the engineers.  The private sector managers would leave staff behind to work and ‘pay the bills’, and public sector municipal engineers would approve their own training requests. When they returned they would know this new future data represented a dilemma and they would hold a meeting of the secret society of municipal engineering managers, cleverly named the “SWMinatti” during an earlier BEvERage-infused meeting. They said it stands for Storm-Water-Management-Is-Never-A-Truly-Tested-Initiative. They laughed but their wives just shook their heads once this was shared at home.  At this special meeting they would discuss how they would ‘come clean’ in the eyes of the public and regulators and dew-eyed engineers-in-training about the ‘real’ state of practice in municipal engineering design and why they had absolutely no appetite for the new, perfect, high resolution, future climate datasets. The future datasets would mean their municipal and stormwater management practice could now be ‘truly tested’.


The municipal engineering managers would meet. They’d initially joke about the “Weather Zoltar” machine that knows all and tells all - and question if it was really predicting accurate temperature and precipitation on a 10 m grid scale across Canada every 5 minutes for the next 84 years? It turns out it was indeed. How? Early on, several GTA conservation authorities got together and made a $20M grant request to confirm the Weather Zoltar predictions and installed high-precision climate stations every 10 metres in a test catchment north of Toronto - the grant request was immediately fulfilled. The total precipitation measurements every five minutes for 2 years of continuous monitoring were within 3 percent of the Weather Zoltar predictions but the extreme rainfall intensities were less accurate given the bias in equipment measurements. So just a minor measurement error. Temperatures were “bang on” to the first decimal except at the stations affected by shading. Weather Zoltar did know all.

Using a napkin, the municipal engineering managers would start a list of the things that they do in planning, evaluation and design that could be shown to be questionable by the Weather Zoltar data (i.e., overdesigned or underdesigned) and the things that would really benefit from the precise future climate and weather datasets. They would start with things they design for new developments and decide on a code for evaluating issues with each. The code “Not a Thing” meaning that the future data would be of little value, and the need for adaptation for the component design was unnecessary. The code “Might be a Thing” meaning some analysis could be pursued to confirm if any adaptation was required:
New Development System and Component
Will Future Weather Datasets Help? / Why? / How?
New Storm Systems

Draft plan lot layouts
No, lots are far beyond river floodplains (no events above Hurricane Hazel freeboard before 2100). Seems reasonable as Pielke has shown decreasing tropical storm frequency and intensity in the US.


Adapting to larger floodplains affecting new development limits - Not a Thing.
Stormwater pond sizing
No, so many uncertainties in the subdivision design that pond blocks are oversized in the draft plan. Plus ponds have spillways with freeboards to handle flows well in excess of current 100-year design.


Adapting new pond sizes for quantity control - Not a Thing.


What might be a Thing? Review design hyetographs for existing weather - if conservative for existing, adaptation to future weather not expected to be a Thing.
Storm sewer sizing
No, pipes flow partially full with today’s 100-year and predicted higher intensities and peak flows will be throttled by inlet control devices. If some enter the storm sewer system (exceed today’s 100 year design flow) it will be accommodated in the freeboard to the basement elevation (basement slab’s 1 m above HGL).


Adapting new storm sewer sizing for basement flood reduction - Not a Thing.
Local culverts
No, they are sized for 10 year events so they will overtop 6 times in their 40 year design life vs 4 times in the old climate. But it is sort of an arbitrary “even number” design return period anyway (as humans evolved with 10 fingers and toes probably and gave us this base 10 number system). If culvert was something critical, with consequences of failure, it would be sized to a higher design standard.


Adapting new small culvert sizing to manage overtopping - Not a Thing.
Storm outfalls
No, they are susceptible to erosion wash-out by the receiving watercourse. Ideally they are set back from the meander belt-width with local connecting channels to limit risk of wash-out. They are often ‘fail-safe’, meaning some headwalls can fall into the creek with little consequence. Knowing future weather could be used to assess different future shear stresses in the creek but there is so much uncertainty in selecting critical shear stresses for reaches, etc. that no different design action beyond common sense set-backs would be followed with the perfect future climate data, imperfect derived flow data, and highly uncertain derived stresses and resulting vertical or lateral migration rates of the watercourse.


Adapting new outfall design to manage wash-out risks with future weather erosion stresses - Not a Thing.


Add changing freeze-thaw cycles to above … even less of a Thing.
Overland drainage sizing (on roadways)
No, these are often very overdesigned for yesterday’s weather. In one example, the ‘Rouge 4A’ subdivision, there were 2 critical overland flow evaluations points in design. At “LP#1” the overland capacity was 3.70 cms, 276% of the 100-year design flow of 1.337 cms. And at “LP#2”, the overland capacity was 1.85 cms, 791% of the 0.234 cms design flow. There is plenty of spare capacity.


Adapting new overland drainage systems to prevent spilling / flooding - Not a Thing.


The engineers agreed that ‘overland flow climate adaptation’ was “not a thing” to worry about due to existing overdesign in the GTA. But agreed that some considerations should be made in SW Ontario where a saw-tooth road grading pattern keeps all the runoff on the road - some sensitivity analysis toward storage in those systems would be worthwhile to see if freeboards are adequate to store more runoff from higher Weather Zoltar events.


What might be a Thing? Check and modify freeboard on-road storage design standards to accommodate future weather.
Storm pumping stations
No, these are not common in the GTA except in SW Ontario they are used to empty ponds or drains when receiving water levels are high. The pump stations operate only under certain conditions. If lake levels or watercourse/municipal drain levels increase, pumps will operate more frequently.


Adaptation of new storm pumping station capacity to future weather - Not a Thing.


What might be a Thing? Review design hyetographs used for pump storage - currently conservative 6-24 hour Chicago events evaluated. Would a future time series of more extreme weather, presuming lake and watercourse levels could be predicted, such that there is a need to change the size of pumps? Or would longer upstream roadway flooding be acceptable (existing 36 hour drawdown period is used for design).


What Is a Thing? Design standards for resilient power supply and back-up capacity should be reviewed, updated as required considering critical features such as some transportation routes, etc (e.g., served by pumping station pumping underpasses).
New Sanitary Systems

Local sanitary sewers
No, sewers are over designed with excessive dry weather peak flow rates and peaking factors and sewers are designed to flow partially full. Limitations with current design include deterministic infiltration and inflow allowances that do not account for extremes. But because extraneous flow stresses in new fully-separated sanitary sewers are limited (100 year I&I rates an order of magnitude below partially-separated system rates) systems have an intrinsic buffer against surcharging and back-up. Also, many municipalities require backwater valves on the sanitary lateral, such that in a rare event,


Adapting sanitary sewer capacity for future weather - Not a Thing.


What might be a Thing? Thorough review of I&I allowances in design. A doubling of current I&I rates may be in order, at least though a check storm? Some case study subdivisions should be evaluated to confirm if this potentially “Is a Thing”. This is required regardless of the future climate data trends.
Sanitary pumping station
Yes, we found a thing foreshadowing even bigger things in existing systems! Pumping stations are designed for dry and wet weather conditions. Like local sanitary sewers, pumping stations are designed with infiltration and inflow allowances that may not reflect today or future weather’s extraneous flows. The consequences of failure are significant in terms of back-ups / flooding or environmental impacts due to overflows/by-passes.


Adapting new sanitary pumping capacity to today’s and future weather - It’s a thing.
Sanitary trunk sewer
No, these are typically deep with no property connections such that existing or future weather extremes do not have consequences in terms of flood or environmental impacts. Dry weather flow rates and peaking factors accumulate in trunk design, resulting in excess capacity compared to conservative design values.


Adapting new sanitary trunk capacity for future weather - Not a Thing.
New Water Systems

Local watermain distribution system
No, fire flow scenarios governs watermain size. While future higher temperatures may increase irrigation requirements and peak hour demands, these do not govern design. If governing demands were to increase as a result of irrigation, demand management would be more cost effective than system upsizing especially given the water quality / public safety issues of oversizing systems and reduced chlorine residuals.


Adapting new local watermain sizing for future weather and irrigation demands - Not a Thing.

So the overall assessment of new development servicing is that storm systems are full of resiliency now and would not require adaptation for future. The municipal engineering manages raised a glass. They decided that system components could be checked with future IDF values, but may not require upsizing if existing safety factors, such as HGL freeboard in storm sewers are adequate and overland capacity remains excessively conservative - someone should get federal funding and do a detailed model of a new subdivision to show this with the future climate data they all agreed. The acknowledged that some components such as pumping stations and ponds designed using hydrograph methods would benefit from a review of design storm distributions to ensure conservative design.

Their overall assessment of new development sanitary systems suggested that design approaches for considering inflow and infiltration should be reviewed to account for existing extreme weather stresses as well as future ones. But in new developments this seems to be a low risk area - new builds do not have infiltration inputs like old ones, nor the inflow ‘pathways’, like downspouts to foundation drains or unmanaged overland inflows. Again, they agreed someone should apply for federal funding to analyze a new subdivision to confirm this so they could put the adaptation question to bed.

All of a sudden, a giant asian carp leaped out of the channel - they were meeting at the Keating Channel Pub & Grill - and ‘took’ out the littlest manager. BAM! Bonked him right in the head. Since he was from a city with mostly new development it didn’t matter that he was now out cold on the patio for the rest of the discussion because his systems seem to be in good shape with a bit of review of safety factors in existing design approaches - it was noted that the University of Waterloo’s Intact Centre for Climate Adaptation was developing a  Flood Resilient Community Design Guideline to identify high level master planning requirements and local storm, overland and sanitary design objectives to limit flooding - engineers could follow a simple checklist to see if they are following this good standard practice approach in their planning requirements in their Official Plans and engineering design standards. If they do this, there is little need to focus further on climate adaptation in new developments.


So the municipal engineering managers would feel pretty good, except for one. He worked in a city with little new development but a lot of old pre-1970’s development and infrastructure built to early limited design standards. His systems included many storm drainage systems built with no overland drainage system, and many combined and partially separated sanitary sewer systems. The managers all agreed that they spend most of their time and effort on these old limited standard systems - these are the ones where there is ongoing litigation or claims regarding system performance and damages. The ‘old development city’ manager said his city was undertaking basement flood management studies in all these old areas, completing remediation projects to upgrade service levels, and undertake billion-dollar strategies for CSO management and operational improvements. He said he saw a great blog that analyzed the historical floods in 2000, 2005 and 2013 and correlated the flood density to the era of construction - so these is a lot of variability within the subset of older systems, with combined CSO systems generally having lower flood risk due to the surcharge relief while partially separated systems have the highest flood density. The manager with a balance of new and old development echoed this observation on diversity, saying he has litigation ongoing for flooding in one old area -never new areas - and all his ongoing storm flood remediation projects are in pre-1960’s areas. All the sanitary I&I reduction efforts focus on the high extraneous flow old areas too - nothing is done in the new developments because when we get 25-year storm, we don’t get calls from new areas. Climate adaptation in new areas is really ‘Not a Thing’.  Bottoms up!

The SWMinatti found another napkin on the next table and started to evaluate the infrastructure components in old, existing developments to see how many things they could find to adapt given the perfect Weather Zoltar data now in hand:


Old Development System and Component
Will Future Weather Datasets Help? / Why? / How?
Old Storm Systems

Storm sewer system
No, systems may be built to 2 year storm capacity, so there are predominantly exiting weather risks. Upgrades to today’s conservative 100-year storm are often ‘maxed-out’ within right of ways meaning bigger upgrades at not always feasible. Some system upgrades are not cost-effective and do not meet the Council approved threshold for implementation funding. Larger upgrades would introduce more utility constraints and expensive relocations, deeper systems with higher marginal costs due to dewatering requirements or more more costly unconventional construction methods. Small marginal incremental benefits of larger upgrades for future weather would have to be measured against high marginal incremental cost, and low benefit/cost ratios. This cost/benefit analysis should be completed against the backdrop that normalized catastrophic losses are not increasing in Canada considering net written premium growth.


Adapting old storm sewer capacity to prevent basement flooding - Not a Thing. Why? Because it’s already a big expensive, constrained thing under existing weather (i.e., when cities upgrade to 100 year level of service for today’s weather).


A spike in catastrophic losses - Not a Thing when GDP growth or premium growth are factored in, suggesting no economic driver to address damages beyond those associated with existing extremes.


What might be Thing? Review design hyetographs for existing weather - if conservative for existing, adaptation to future weather not expected to be a Thing. If not conservative, further upgrades may be revealed to be constrained physically, financially, or from an incremental benefit/cost sense.
Storm outfalls
No, see outfalls under new development. Old outfall siting intrinsically more susceptible to wash-out under either existing or future weather. Rehabilitation / protection required to address existing risk.


Adapting old storm outfalls to future erosion stresses - Not a Thing. Systems are intrinsically highly vulnerable under existing weather due to siting.
Overland drainage sizing (on roadways)
No, see storm sewers above.


What might be Thing? Mapping and managing overland flow paths through existing urban areas to guide infill development risk management. Use JBA Risk 2D overland mapping (GRID format) or readily available provincial conditioned DEM overland drainage features (vector format).
Old Sanitary Systems

Local sanitary sewers
No, see old development storm sewers. Sanitary systems are constrained like storm. Upgrades consider a 25-50 year historical storm design standard. Future weather will not change the historical standard.


What might be a Thing? Review historical design hyetographs for existing weather. Complete cost-benefit analysis to determine if alternative design standard can be justified for more extreme existing weather or future weather.
Sanitary pumping station
No, see local sanitary sewers above.


Standard practice for sanitary pumping station design in an old development with high extraneous flows would include the evaluation of overflow / by-pass devices, and I&I reduction. Peak flows under existing or future weather would not necessarily be accommodated in the pumping station.


Adapting old pump station capacity in a high extraneous flow system - Not a Thing.
Sanitary trunk sewers
No, old development trunk sewers in valleys are often highly susceptible to natural erosion processes, downcutting and lateral migration of watercourses. Significant investments in remediation and protection are ongoing. Key existing challenges are access for ongoing operation and maintenance and lifecycle replacement of features in constrained valleys (property constraints, topography constraints, environmental constraints).


Adapting old sanitary trunk sewers for future watercourse erosion stresses - Not a Thing.  
Regulator weirs
Yes, the operation of regulator weirs could be greatly optimized to minimize CSO’s and/or limiting basement flooding with minute by minute weather predictions.


Well not quite. The city’s hydrologic models even with perfect rainfall inputs, predict peak flows within a range of -10% to +25%, so CSOs could be better managed but perhaps not optimized. Trade-offs between environmental impacts (aquatic habitat, beach closings) and flooding impacts would have to be made, with one objective satisfied at the expense of the other. And some regulators would not be adjustable remotely or in real time.


Adapting sanitary system operation to minimize CSO’s, and/or limit basement flooding could optimized for some components having real time control capabilities is a Thing. Don’t forget though that Weather Zoltar with minute by minute rain predictions is not a Thing, this is fiction.
Real time CSO controls
See above.
CSO management strategy
No, the city’s strategy is already build on a historical continuous period rainfall record that virtually eliminates CSO’s. Modifying the strategy to account for some other future extreme years, seasons or weeks would add considerable expense with marginal benefit compared to baseline CSO elimination with existing weather.


Adapting a CSO strategy that already eliminates CSO’s to future weather - Not a Thing.
Wastewater treatment plant
Yes, perhaps. Presumably, the future gridded 5 minute rainfall could be put in a calibrated model to transform it into precise wet weather flow at the plant to support optimized operations to maximize treatment efficiency and minimize by-passes. But then again, perfect rain data will not yield perfect flow data at the plant anyway - there is so much scatter in the long term GWI flow response to precipitation, and the short term RDII flow response, plus uncertainty with the macro-scale groundwater systems and foundation drainage (aka mysterious “urban karst”) and surface drainage/wastewater system hydraulic interaction driving inflows during extreme weather, or micro scale interactions between surcharged foundation drains, leaky floor slabs and sanitary floor drains.


WWTP management could be marginally improved with perfect precipitation data, but that perfect data will then reveal the uncertainties in the other complex processes (precipitation-extraneous flow transformations and processes that we don’t even have terminology to describe.

The municipal engineering managers put the old development napkin notes down and scooped up the last nachos. The new development city engineer on the patio was still breathing so that was good - they wondered if they may have to cover his part of the bill - not good.

They would sum up the old system adaptation needs observing that old systems have existing capacity limitations intrinsic in their design. They can have very low levels of service - CSOs can occur many times a year, sewer back-ups in most chronic areas can happen for small return periods, never mind extreme events. Fortunately there are large scale programs and projects aimed aimed at remediating existing issues and improving level of service. Unfortunately these improvements also have physical, financial and environmental constraints.  As a result the Weather Zoltar future climate details will not change how these existing issues are managed. Low cost measures like inflow reduction through cost effective downspout disconnection will continue whether future rainfall is more or less extreme. High cost measures, like upgrading storm sewers to convey 100 year events will continue regardless of future weather, and these upgrades will be constrained physically and financially. The CSO management strategy that will virtually eliminate CSOs will continue whether future seasonal rainfall patterns are more or less variable, or have a few more extreme in some years - it is needed for operational purposes as well. Erosion protection for intrinsically vulnerable features like sanitary systems in valleys will continue as well - design is based on conservative practices like taking the recommended armouring size and doubling it due to inherent uncertainties in current design practice and past experience with wash-outs.

The municipal engineering managers agreed that the fundamental drivers for climate adaptation should be reviewed. They questioned the common belief from their Environment Office staff that storms are becoming more intense or occurring more frequently - Environment Canada’s own Engineering Climate Dataset version 2.3 and their regional analysis of short duration rainfall shows no detectable trends and in some regions the statistically significant trends are downward. There seems to be an ‘availability bias’ in the media and among those with limited scientific background to list a few extreme events and cite this as statistically relevant information to act upon - the engineers agreed that the plural of anecdote was not data and that data-driven, evidence based policies are needed. To test this our they asked the bus boy if he thought storms and flooding were getting worse - he said that he worked at this Keating Channel pub for 4 years and there are a lot of floods on the local roads so yes, it rain must be getting worse - and look at the flood they just had in Windsor. One of the engineers joked that flooding has been happening since the 70’s .. the 1870’s based on the flood inquiry report for the system - the bus boy didn’t get it. They would have to tip well to make up for harassing him. They agreed that someone should get some federal funding to communicate the historical and regional trends data so engineers know if they are in a higher change zone or if their raw weather data needs any safety factors applied to account for intrinsic biases (short uncertain records with sample bias, raw data not corrected/adjusted for daily measurements). That would support engineers in deciding if they need to update IDF curves. One engineer suggested that this could be a reality check for some Environment Office staff who keep citing now-discredited insurance industry rain trend claims - that storms that happened every 40 years are happening every 6 years - that has been shown to be a theoretical shift in a bell curve and not real Environment Canada data as cited.

The municipal engineering managers agreed that the future climate Weather Zoltar data took away one important aspect of uncertainty in infrastructure planning, analysis and design. What it exposed was all the other sometimes more significant uncertainties that go into infrastructure planning, analysis and design like transforming rainfall to runoff given variable antecedent conditions, or transforming rainfall into sanitary inflows or moderate or slow-response groundwater infiltration responses, or water levels in infrastructure and the routing and storage of peaks. Precise exact future climate data allows engineers to put a sharp point on one part a big, blunt instrument called hydrologic and hydraulic modelling. Maybe someone should get some federal funding and demonstrate these uncertainty factors and how they all work together and show that climate uncertainty should be considered along with all the other uncertainties - for what system components is climate important and how can it be readily addressed. After all we only have exact future climate data available to 2100 and after that we have to make some assumptions about how to handle later uncertainties.  

Lastly, the managers agreed that what is really needed is a review of the economic drivers for climate adaptation. Since US data shows tropical storms are less severe and frequent and there is local data on decreasing intensity trends, like from convective storms, there must be other drivers for increasing catastrophic losses. The growth and intensification of urban areas could be reviewed - one engineer suggested his initial GIS analysis showed watershed urbanization increasing 100% a decade compared to research showing peak rain intensities increasing 1-2% per decade. Those drivers have to put into perspective so that remediation actions can be prioritized. Analysis in the US showed flood losses normalized for GDP growth were decreasing - increases could be explained by growth and more insurance market penetration. This means the issues of flooding is still significant, but it is not ballooning out of control such that the investment in existing flood mitigation or future flood adaptation should baloon as well. One engineer shared that he normalized the Canadian catastrophic loss trends from 1990 to 2015 using person property premium totals and there is no normalized upward trend. The economic drivers could be considered as part of comprehensive cost-benefit analysis for infrastructure planning and could help refine budget thresholds currently being placed on rehabilitation projects.

The Hydrogeologists

The hydrogeologist (just one - they don’t have friends to hang with) looked at the infographic that came with the future weather datasets and laughed. “What am I going to do with this? So what if I have the rainfall and temperature data. Yes I want to refine my recharge estimates that drive my groundwater model, but the biggest part of the water balance, the evapotranspiration, is still a great big hairy unknown. My empirical equations are really really rough as it is now. Anyway, before Weather Zoltar, we did a sensitivity analysis on future climate for a really stressed groundwater water supply system. We found that most scenarios gave us more recharge because of more precipitation and less frozen soil and that resulted in increasing groundwater levels at the municipal well. The assumption that climate change would automatically decrease groundwater levels, starve baseflows and necessitate costly infiltration BMPs is really unfounded. The Weather Zoltar data confirms it. I’m always amazed at these municipal engineers - they have these cartoonish representations of water budgets for cities and claimed in the past that urbanization would decrease baseflows - what do we see in our watersheds? - increasing baseflows. The same was predicted for baseflows with climate change early on and now we show that is unfounded. If groundwater levels are going to drop - and I don’t know if they will, I don’t have an evapotranspiration Zoltar, or a perfect representation of the groundwater systems - then just monitor the situation and drill a deeper well if you ever need to. It would be way too expensive to change what we are doing now based on uncertain impacts, even with this perfect Weather Zoltar data. Done.

***

So what do the hydrologists, municipal engineers, and hydrogeologists do when they ‘catch the car’? When they have perfect future climate data to use? They find that they have significant design safety factors in new systems and take the opportunity to look at weather closely and test assumptions on design storms. Some further study is required to confirm these safety factors. They check if their current local or regional IDF data has been trending higher and needs updating. And they realise they could do these things even without the Weather Zoltar data. The also realise they have a lot of other outstanding uncertainties in any planning, analysis and design. Even perfect future climate data does not help address uncertainties in processes resulting from climate data (e.g., water balance losses, runoff and infrastructure flows). In old systems there are significant physical and financial constraints under existing conditions such that future weather may not change their strategies significantly. Robust cost-benefit analysis as part of multi-objective risk-based decision making is therefore required to guide any adaptation measures that would increase infrastructure investment considering climate impacts. This analysis should consider some decreasing regional trends in extreme rainfall and relatively ‘flat’ trends in losses relative to economic growth and insurance premium growth.

(c) R.J.Muir, Toronto - 2017


PS - today there is a considerable amount of effort prognosticating about future intensity-duration-frequency curves - what will they be? Unfortunately this is not converging. The questions we should be asking is what if you knew what they would be exactly ... or better yet what all future rain patterns would be? The possible answers in the Weather Zoltar story show us that once you know the exact future rain, you would have to face the reality that you have wide uncertainty on the next steps in applying rainfall data, whether in deriving a synthetic 'design' storm from that IDF data (rain statistics become simulated storm), or a hydrology transformation (simulated rain storm becomes runoff) or a hydraulic simulation (simulated runoff becomes infrastructure flow), and that a fulsome economic framework does not exist for decision making related to infrastructure investments as a function of system performance (e.g., flood damage losses, environmental issues, etc.... i.e., simulated flow becomes flood depths and potential damages/losses) what is the benefit/cost, what is the ROI, whose benefit? whose cost?. The good news is that most municipalities have a couple decades of obvious remediation work to do based on what we clearly know already about today's rainfall - they should get on with it - the needs are largely in pre-1980's subdivisions with design limitations related to riverine flood risk management (encroachment/enclosure of large channel/watercourses), wastewater system design (high extraneous wet weather flow stresses from foundation drains etc), and storm drainage system design (no explicit major overland flow design, limited minor system / sewer capacity).


Make a wish. All future rainfall details .... if your wish is granted then you'll need a few more arcade machines to predict
how the rain becomes runoff, how runoff becomes infrastructure flow, how flow becomes flood depths, how flood depths
becomes losses, and how to determine the appropriate economic investments in infrastructure to address the issues ... oh,
and another machine to predict future interest rates to support the discount rate in the economic analysis.