Showing posts with label flash flooding. Show all posts
Showing posts with label flash flooding. Show all posts

How Have Rainfall Intensities Changed in Canada Over the Past 10 Year? Not Much. Extreme 100-Year Rainfall and Short Duration Intensities Causing Flooding Are Lower

Environment and Climate Change Canada's Engineering Climate Datasets including rainfall intensity duration frequency (IDF) statistics are regularly updated as observation records become longer, and more and more stations have sufficient data to analyze.

What do the recent updates show? There is no new normal in design rainfall intensities.  Over the past 10 years, the severity of extreme rainfall has decreased on average.

Short duration sudden rainfall rates responsible for flooding in urban areas have also decreased overall - only the frequent, low intensities show an overall increase, which can be expected given additional precipitation in Canada. Of course some regions may have different trends (a previous post has shown that the southern Ontario frequent intensities (i.e., 2-year return period) have decreased).

Where do design intensities, the statistics in IDF curves and tables, come from?

Annual maximum series (AMS) of recorded rain intensity are collected for duration intervals of 5 minutes to 24 hours.  These series are used to derive probability density functions to describe the frequency distribution of rainfall, and that can be used to determine specific 'return period' design intensities.  The return period is the inverse of the probability of a rainfall intensity (or volume) over a certain duration occurring during a given year.  So a 100-year intensity has a 1/100 or 1% chance of being exceeded each year, while a 2-year intensity has a 1/2 = 50% chance per year. Storm sewers are designed to convey 2, 5 to 10-year return period rain intensities - 5-year is most common.  Flooding, especially extreme flooding, occurs at higher return periods becoming more severe above the 25-year return period and increasing for 50 and 100-year intensities.

The recent version 3.10 update to IDF statistics analyzes rainfall data up to 2017.  These intensities can be compared to the version 2.00 datasets that included data up to 2007.  A total of 226 stations were analyzed to check for changes in intensity - this total includes about 72 stations that have been relocated, but by not more than 5 km from their previous location.  The same trends are apparent for all the exact match stations (92 stations) and stations with new IDs but unchanged coordinates (154 stations).

The following chart shows the ratio of new intensities to old intensities for these 226 stations, so 1.0 means no change in design intensities.

Extreme Rainfall Trends in Canada - Design Intensities by Duration and Return Period

What are the take-aways?

1) rainfall design intensities are generally unchanged over the past 10 years, considering 3313 station-years of additional data,

2) extreme rainfall intensities, the 100-year rates (red markers in the chart), have decreased - the shortest duration intensity governing urban flood risk has dropped the most,

3) short duration intensities that govern sewver design, 5-year return period intensities (purple markers) over 5-minute to 2 hour durations are unchanged on average,

4) 2-year intensities (green markers), the low intensity rainfall that is exceeded in 50% of years, has increased slightly - these intensities do not govern infrastructure design and are unrelated to urban flash flooding or flood damages.

Popular media has focused on theoretical changes in rainfall intensity, sometimes confusing those projections with actual changes in rainfall intensity that have been measured or observed.  See this review of recent CBC coverage in the Financial Post.  Increasing damage amounts are erroneously linked to changes in rainfall due to a changing climate.

If popular media were to focus on observed data, and actual trends in extreme rainfall statistics, like the trends reviewed above, it would have to temper claims of a new normal in extreme weather.  Data do not show increases the critical rainfall intensities - in fact, on average, extreme intensities have decreased.

Changes in v2.00 to v3.10 dataset intensities are shown in the tables below.

Severe rainfall trends in Canada due to climate change
Extreme Rainfall Trends in Canada - Engineering Climate Datasets - IDF Curves


The analysis above is based on assessing the effect of adding additional data to the v2.00 IDF data intensities.  It is also possible to assess the effects of new data by splitting the series into old and new halves to compare IDF intensities and look for trends.  The following charts show the change in two long-period climate stations in the Toronto area.   Rainfall volumes are shown for a 24 hour period - intensities would be simply the volumes divided by 24 hours.

Toronto Pearson International Airport Climate Station - Changes in 24 Hour Rainfall Frequencies

For the Toronto Pearson International Airport climate station, the return periods of the old period volumes (blue line) have shifted right in the new data set, meaning longer return periods for a given volume, i.e., lower frequency.

The chart also compares how a climate model has predicted return periods have changed from 1961 to 2010, covering approximately a similar period.  Those model frequency shifts were reported by the CBC (link: https://www.cbc.ca/news/technology/extreme-rainfall-climate-change-1.5595396) and considered a 1 degree warming scenario. The climate model predicts lower return periods for a given volume, meaning that volume occurs more frequently - that is not consistent with observed local data at this station that has shown significantly longer return periods in the new period.

Toronto City Climate Station - Changes in 24 Hour Rainfall Frequencies

For the Toronto City (downtown) climate station, the return periods of the old period volumes (blue line) have shifted slightly right in the new data set, meaning slightly longer return periods for a given volume, i.e., slightly lower frequency.

The chart again compares climate model return periods for 1961 to 2010.  Again, the model, which represent a large area, and not necessarily the specifics of the Toronto area predicts lower return periods for a given volume, meaning that volume occurs more frequently - that is not consistent with observed local data at this station that has shown no significant change.

It is possible to look at the change in intensity as opposed to the change in frequency.  The following chart for Toronto Pearson International Airport climate station presents the same data but expresses the changes in terms of intensity, as opposed to frequency.

Toronto Pearson International Airport Climate Station - Changes in 24 Hour Rainfall Volumes
Often you can read in media reports that both the frequency and intensity increased over time - this is a peculiar way to express changes as that data can be used to show a change in one or the other but realistically not both at the same time.  To show the change in frequency and the change in intensity would mean allocating the change in some proportion to the two.

***

Do we have enough weather stations to analyze trends in observations - yes! - we are getting more and more stations and data over time - see previous post regarding additional Environment Canada stations since 1990.

In addition, municipalities are adding 100's of stations to support local studies as described in another post. More rain intensity data than ever before.

Although the data shows less extreme rainfall in Canada, some confuse models that predict future conditions and measured data.  The CBC misinterpreted a model predicting that 50 year storms would happen every 35 years in a time period out to 2015, and reported that this projections has already happened - read more about that here.

Yes, we're getting more extreme rainfall, and it's due to climate change, study confirms .. well not so fast

CBC News has a new report "Yes, we're getting more extreme rainfall, and it's due to climate change, study confirms" https://www.cbc.ca/news/technology/extreme-rainfall-climate-change-1.5595396

The byline is "Federal scientists predict more frequent and severe rainfall in future", referring to this research paper Human influence has intensified extreme precipitation in North America by Megan C. Kirchmeier-Young and Xuebin Zhang
https://www.pnas.org/content/early/2020/05/26/1921628117

The research paper refers to "heavy rainfall", i.e., Kirchmeier-Young the lead author and research scientist at Environment and Climate Change Canada stated "We're finding that in North America, we have seen an increase in the frequency and severity of heavy rainfall events."

Kirchmeier-Young also refers to "extreme rainfall" and makes a connection to urban flooding in the CBC article:

"And as we continue to see warming, we will continue to see increases in the frequency and severity of extreme rainfall," Kirchmeier-Young said. "And heavy rainfall is one of the major factors in flash flooding, particularly in urban areas."

The CBC relates extreme weather to rising insured flood damage trends in Canada since the early 1980's.

Let's review:

1) What 'heavy rainfall' events were reviewed in Kirchmeier-Young's research paper?

2) Is 'heavy rainfall' for a climate researcher the same as 'extreme rainfall' for an engineer?

3) Do 'heavy rainfall' and precipitation trends follow 'extreme rainfall' trends used in engineering design?

4) Do 'heavy rainfall' events studied in the research paper cause damaging flood events, and flash flooding 'particularly in urban areas?

5) What are the trends in 'extreme rainfall' in Environment and Climate Change Canada's Engineering Climate Datasets, the data used by engineers to analyze and design infrastructure to manage flash flooding risks in urban areas?

6) What does Kirchmeier-Young's research paper reveal about previous extreme rainfall and flooding events in Canada - has climate change increased runoff that could aggravate flood damages?

1) What 'heavy rainfall' events were reviewed in Kirchmeier-Young's research paper?

The research paper abstract indicates "Here, we address the question of whether observed changes in annual maximum 1- and 5-d precipitation can be attributed to human influence on the climate."

What does "1- and 5-d precipitation" mean?  This is the amount of rainfall over one to five days, so 24 to 120 hours. While precipitation can include snowfall too, the focus is on rain.

Note, the research paper actually refers to 'heavy precipitation' and not 'heavy rainfall'.

The authors have confirmed that short-duration rainfall was not reviewed, only annual maximum daily rain.

2) Is 'heavy rainfall' for a climate researcher the same as 'extreme rainfall' for an engineer?

No.

The research paper states:

"We focus on the annual maxima of 1-d (Rx1day) and 5-d (Rx5day) rainfall. Rx1day is important for flash floods as well as infrastructure design. Rx5day is relevant to large-scale river flooding."

A training session on the use of rainfall intensity design curves from a climate scientist (link: http://projects.upei.ca/climate/files/2012/07/IDFtraining-Auld-final.pdf) indicates that shorter times influence flooding (underline and all-caps emphasis are in the original material, not added here):

 "An urban centre could experience flooding from heavy rains falling over a SHORT period of time, such as A 5 TO 30 MINUTE PERIOD."

"• A rural highway with deep ditches on its shoulders would not likely be impacted by an intense rainfall lasting only 5 to 15 minutes, although the paved road itself would see ponding of water.
• A heavy rainfall event lasting 1 to 6 hours might be more significant for filling the ditches and overflowing the roadway."

So short durations are important for flooding.

From the insurance industry perspective, an Institute for Catastrophic Loss Reduction paper in Journal of Flood Risk Management notes the importance of short-duration rainfall (link: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jfr3.12168) states

"Subdivisions built before the 1970s are less likely to be serviced by major systems (Watt et al., 2003), and are thus more vulnerable to overland flooding from extreme short-duration rainfall events."

A civil engineer will tell you that rarely that the a 1-day rainfall is not 'important for flash floods'.  Why? Because urban flooding is caused by short-duration rainfall.  Designers of storage facilities such as stormwater manage ponds may consider design rainfall events up to 24 hours.

In the Canadian Water Resources Journal, authors of Flood processes in Canada: Regional and special aspects (link: https://www.usask.ca/hydrology/papers/Buttle_et_al_2016.pdf) representing six universities across Canada, INRS-ete, and Environment Canada review "key processes that generate floods in Canada":

"Similarly, floods can be generated across most of the country by rainstorms with large depths and/
or intensities (Figure 1). Thus, convective and frontal systems can generate large short-duration rainfall intensities (Alila 2000) which can occur in all regions (Table 1). Nevertheless, the significance of such storms to flood generation varies across the country, with the greatest
depths and intensities for short-duration events in southern parts of Canada and the smallest in the Arctic. These short-duration events are often responsible for flood generation in relatively small drainage basins, given the greater chance of high-intensity rainfall occurring over
the entire basin (Watt et al. 1989)."

"Short-duration events are often responsible for flood generation".

"Small drainage basins" is equivalent to urban drainage systems. In the municipality where I was Manager, Stormwater our storm sewer drainage systems averaged just over 50 hectares in size.  Urban drainage systems that are 'flashy', responding quickly to rainfall running off hard surfaces, are characterized in engineering design by a 'time of concentration' that is the response time of the drainage area, and which is used to determine the extreme rainfall durations relevant to infrastructure design.  It is never 24 hours or one day.  Typical times of concentration are measured in minutes and up to hours.

The Ontario Ministry of Transportation describes the design rain storms that may be used to analyze rural and urban areas, including the duration of the storm (link:   http://www.mto.gov.on.ca/english/publications/drainage/stormwater/section10.shtml):



Storms of duration up to 24 hours are applicable to rural land uses.  Storms of up to 4 hours (including flashy Chicago hyetograph temporal distributions) are applicable to urban areas.  The SWMM Knowledge Base, a discussion forum for the standard U.S.EPA Stormwater Management Model and other modelling platforms, provides insight into what storm durations practicing civil engineering / urban system modelling professionals use.  In the discussion thread "Design storm duration" (link: https://www.openswmm.org/Topic/3967/design-storm-duration) a duration of 24 hours is deemed by one practitioner to be 'ultra conservative' ("ultra conservative choice of a 24-hour storm but it hardly can be justified when no detention storage is involved"), another states that in small urban systems the 5-minute rainfall governs peak flows ("a small (25 acre) urban, very impervious, drainage area was that the peaks were almost the same no matter the duration, and that they were driven by the peak 5-minute rainfall"), and Ben Urbonas, Ben Urbonas,
President of Urban Watersheds Research Institute and Owner, Urban Watersheds, LLC (LinkedIn: https://www.linkedin.com/in/ben-urbonas-2a319338/)  notes the use of durations of 2-6 hours ("All of our design storms are front loaded intensity types and range from 2-hour to 6-hour durations depending on watershed area.").

Marsalek and Watt's paper Design storms for urban drainage design in the Canadian Journal of Civil Engineering shows design storm durations of often 1 hour duration, sometimes up to 6 hours (US Soil Conservation Service (SCS) for rural areas, as highlighted in their Figure 1.

Marsalek and Watt tablulate design storms with duration and categorize the use of the storms for different hydrological studies, including urban/sewer design and other applications, such as the study of large rural basins. Table 2 from their urban drainage review shows durations of up to 1- 12 hours for Canada's Atmospheric Environment Service's (AES) storm, and 1, 3 and 4 hour storms for sewer sizing in other jurisdictions (see highlights below).

Practitioners in Ontario, Canada will know that longer duration storms are considered for large regional wastewater systems that have a slow response to long-high volume storm events.  These govern large trunk sewer system performance, but not local sewer system performance that is dominated by short duration rainfall.  Even small wastewater system trunks may be governed by short duration rainfall intensities where there are direct inflows, which is common for many flood prone systems.  Analysis of trunk system response in the Kitchener-Waterloo Region showed wastewater trunk peaks flows for most-highly correlated to the 5-minutes rainfall intensities in on Master Plan study (i.e., more than longer durations).


Rivard's paper in the Journal of Water Management Modelling entitled Design Storm Events for Urban Drainage Based on Historical Rainfall Data: a Conceptual Framework for a Logical Approach (link: https://www.chijournal.org/Journals/PDF/R191-12) summarize early work on characterizing storms in Canada and in the highlighted excerpt notes that 1- 12 hour durations represented convective (thunderstorm) and synoptic scale events. See the highlight to the right.

Rivard also summarized what storm durations are of interest for urban design graphically as follows:


So in small to medium basin, up to a 3 hour duration is critical, and for a very large urban basin, up to 6 hours.  Twenty four hour durations and longer are critical to large rural basins.

The statement "Rx1day is important for flash floods as well as infrastructure design." is therefore inconsistent with professional engineering practice in Canada.

Environment and Climate Change Canada publishes Engineering Climate Datasets including Intensity-Duration-Frequency statistics describing rainfall, both common, moderate and extreme, used from infrastructure design.  The durations analyzed are from 5-minutes to 24-hours.

So again, no, 'heavy rainfall' in a climate research paper is not the same as 'extreme rainfall' an engineer uses for infrastructure analysis and design. Rainfall over 1-5 days periods is not the same as extreme rainfall over minutes to hours used to design conveyance systems in urban areas - those 'flashy' systems with short 'time of concentration' characteristics.

The statement in the research paper "Rx1day is important for flash floods as well as infrastructure design." is questionable.  One-day rainfall is way at the fringe of influence on flash flooding.

3) Do 'heavy rainfall' and precipitation trends follow 'extreme rainfall' trends used in engineering design?

Kirchmeier-Young's research found that 1-day duration simulated precipitation from various models has increased over past decades, and this trend follows observations from HadEX2 (a global gridded dataset).

We can compare the HadEX2 trends across North America, and subregions shown in the research paper, with extreme rainfall trends based on Canadian climate station observations.  Let's start with the 1-day, 24-hour annual maximum rainfall trends across Canada.

The chart below shows how annual maximum rainfall has changed according to Environment and Climate Change Canada's version 3.10 Engineering Climate Datasets for all storm durations from 5-minutes to 24-hours.


For 24-hour durations, 4.9% of all stations have a significant increase, 91.2% have no significant change, 2.3% have significant decreases and 1.5% of stations had no data.

Comparing to earlier datasets:

                                                     Version 2.30           Version 3.00            Version 3.10

No significant 24-hour trend            91.5%                    91.1%                         91.2%

Significant 24-hour increase              5.3%                      5.4%                           4.9%           

So the percentage of data that has no significant trend is relatively steady, and represents over 90% of the data. The percentage of data that has a significant increase in 24-hour rainfall is decreasing relative to the earlier datasets.

Canadian Engineering Climate Dataset trend data does not show increases consistent with the research paper.

4) Do 'heavy rainfall' events studied in the research paper cause damaging flood events, and flash flooding 'particularly in urban areas?

No.  Flash flooding is due to short duration, high-intensity rainfall.

The severe thunderstorms that are responsible for urban flooding and that occur over minutes to hours are different than the storms that occur over hours to days as indicated in the RSI IDF training presentation noted above:


For this reason, those interested in turban flooding drivers should look at short duration rainfall extremes - see below.

5) What are the trends in 'extreme rainfall' in Environment and Climate Change Canada's Engineering Climate Datasets, the data used by engineers to analyze and design infrastructure to manage flash flooding risks in urban areas?

Short duration rainfall is responsible for urban flash flooding.  Environment and Climate Change Canada's Engineering Climate Datasets indicate the following on annual maximum rainfall trends across Canada:


The short durations from minutes to a couple hours have low percentages of significant increase, just like the 24-hour data noted above.  The amount of significant increases expected due to chance is 2.5% increasing and 2.5% decreasing.

In a review of an earlier dataset by Environment Canada's Shephard et. al in 2014 (link: https://www.tandfonline.com/doi/pdf/10.1080/07055900.2014.969677) these amounts of changes were deemed not significant:

"Based on this IDF single station analysis, and the more general single station climate results from the 1965–2005 period presented in Section 4a, we conclude that the annual maximum short duration rainfall values across Canada typically do not show a significant trend."

And more recently in Canada’s Changing Climate Report, such changes in short duration extreme precipitation were explained by chance (link: https://changingclimate.ca/CCCR2019/):

"There do not appear to be detectable trends in short-duration extreme precipitation in Canada for the country as a whole based on available station data. More stations have experienced an increase than a decrease in the highest amount of one-day rainfall each year, but the direction of trends is rather random over space. Some stations show significant trends, but the number of sites that had significant trends is not more than what one would expect from chance (Shephard et al., 2014; Mekis et al., 2015; Vincent et al., 2018)."

The short duration intensities used for infrastructure design, derived based on annual maximum series, have not increased in many regions based on compiled studies (see previous post: https://www.cityfloodmap.com/2018/03/extreme-rainfall-and-climate-change-in.html).  A review of design intensities in southern Ontario shows overall increases in short duration values (see previous post: https://www.cityfloodmap.com/2020/05/southern-ontario-extreme-rainfall.html).

So no change in how infrastructure is designed based on short-duration design intensities (that is, not including checks or 'stress tests' for future changes).

6) What does Kirchmeier-Young's research paper reveal about previous extreme rainfall and flooding events in Canada - has climate change increased runoff that could aggravate flood damages?

Nothing.  The storms that lead to widespread urban flooding are not addressed in the research paper.  The processes driving 1-5 day rainfall are different than those driving short-duration rainfall.  There are no significant increases in the short-duration rainfall that causes flooding based on Engineering Climate Datasets as shown above.

Why then have damages increased over decades? Possible reasons are:

a) growth in net written premiums: more insured properties = more losses


b) urbanization: more pavement means more runoff and impacts

The landmark case Scarborough Golf Country Club Ltd v City of Scarborough et al. (Ontario Court of Appeal, 1988, http://members.storm.ca/~river/letters/Scarboro%20Golf%20Club%20v%20City%20of%20Scarboro%20OCA%201988.pdf) decision indicates that Toronto-area urbanization markedly increased runoff stresses that caused runoff, erosion and flooding:

“Expert evidence confirmed the effect of the city's rapid urbanization and water control plans on the creek.”

“It is important to note that the case is not presented primarily as a complaint against flooding but
rather that the markedly increased flows and increased velocity of flow have caused and continue to
cause damage to the creek bed and the adjacent tableland.” and

“There can be no doubt that the storm sewer facilities and urbanization of the lands to the north of the Club are the cause of the effects just described and that the difference in flow and velocity of flow is very substantial.”

Cities are growing and there is more runoff as shown here in some regions:

Urbanization and Flood Risks

c) inconsistent data: the data source for losses cited by CBC changed from 2008 onward

Changing data methods can lead to different results (see previous post on this: https://www.cityfloodmap.com/2018/06/catastrophic-losses-in-canada-have.html)



***

The research paper makes a reference to an attribution study for the 2013 Alberta flood.  It states:

"Additionally, event attribution studies have identified an increased probability of some individual extreme precipitation events in this region due to anthropogenic influence (4, 5)"

Reference 4 is:

B. Teufel et al., Investigation of the 2013 Alberta flood from weather and climate
perspectives. Clim. Dynam. 48, 2881–2899 (2017). (link: https://link.springer.com/article/10.1007/s00382-016-3239-8)

So we have one Canadian storm assessed. Findings are:

"Event attribution analysis suggests that greenhouse gas increases may have increased 1-day and 3-day return levels of May–June precipitation with respect to pre-industrial climate conditions. However, no anthropogenic influence can be detected for 1-day and 3-day surface runoff, as increases in extreme precipitation in the present-day climate are offset by decreased snow cover and lower frozen water content in soils during the May–June transition months, compared to pre-industrial climate."

So greenhouse gases may have increased precipitation, but that is offset by less snow, resulting in no change in runoff, compared to pre-industrial climate.

So with no change in runoff, can there be a change in flood damages attributed to the precipitation change?  The net effect is no increase in risk.

***

To wrap it up, CBC has relied on a research paper that looks at rainfall events (1-5 day precipitation) that are not related to urban flash flooding and are not related to the events that lead to significant damages (convective thunderstorms with peak intensities over minutes to hours).  The research does not review short-duration rainfall that is relevant to infrastructure design governed by short 'times of concentration' - i.e., they are 'flashy'.  The research does not appear to be consistent with trends in 24-hour annual maximum rainfall observed at Canadian climate stations and as published in Environment and Climate Change Canada's Engineering Climate Datasets - data show few statistically significant increases and the percentage of significant increases is decreasing slightly for 24-hour rainfall across Canada.  The short-duration rainfall intensities responsible for urban flooding show no consistent changes, and any significant changes are explained by chance, according to Environment Canada.

Many factors go into increasing flood damages.  Changes in rainfall does not appear to be one of those factors.  Media should take the time to dive deeper into the technical details they reference to improve the accuracy of reporting, so that the public is better informed about complex issues.
Urban flooding is a complex issue, and an important challenge to address that requires significant funding and attention.  A better understanding of the causes of flooding, and any changes in design rainfall, is required to mitigate flooding in the most objective, cost-effective manner.  CBC has relied more on model predictions than on actual data in the past, even confusing the two (see previous post: https://www.cityfloodmap.com/2020/05/what-covid-19-taught-us-about-observed.html).  In this recent report it has not met its JSP principle for accuracy by confusing longer-term precipitation and short-duration extreme rainfall.

***

BONUS - Trends in short-duration rainfall, based on annual maximum observations, from Environment Canada's version 3.10 Engineering Climate Datasets are summarized below (link: https://climate.weather.gc.ca/prods_servs/engineering_e.html).  These tables consider stations with a long period of record and recently updated data for regions across Canada.










Southern Ontario Observed Rainfall Intensities Decreasing - Annual Maximum Values Lower In Environment and Climate Change Canada's Engineering Climate Datasets (Version 3.0)

Ontario extreme rainfall annual maximum design intensity IDF trends climate change
Long term southern Ontario observed maximum rainfall trends,
according to Environment and Climate Change Canada's Version 3.0
Engineering Climate Datasets - decreasing trends in rain intensity and
more significant decreases than increases. 
Good news! Rainfall intensities have been decreasing in Ontario, Canada's most-populated province according to newly-released data. Less intense rain means lower urban flooding risk, contrary to many media reports that have confused future predictions of more extreme weather as a climate change effect with actual observed changes in the past. 

Maximum annual rainfall amounts over short durations at Ontario climate stations are used to derive engineering design intensities used in design of infrastructure such as sewers, culverts, channels, and ponds - the things that help convey rainfall runoff safety away from otherwise vulnerable people and property.

Environment and Climate Change Canada (ECCC) has recently updated its Engineering Climate Datasets that include a statistical analysis of observed trends in maximum values observed each year. The newest data are identified as Version 3.0 and are available as part of the Intensity-Duration-Frequency (IDF) Files on the ECCC website:
http://climate.weather.gc.ca/prods_servs/engineering_e.html

The previous Version 2.3 datasets showed decreasing annual maximum values at 21 southern Ontario climate stations with at least 30 years of observations - see previous post.

The updated Version 3.0 datasets continue this decreasing trend, showing that at the same 21 climate stations with an average observation period of 47 years:

  1. There are 42% more decreasing trends than increasing ones across all durations and stations (55.6% decreasing trends vs. 39.2% increasing ones).
  2. There are 75% more statistically significant decreases than increases (7 significant decreases vs. 4 significant increases).
This table shows the station name, ID, trends for each duration of 5 minutes to 24 hours, as well as the length of record and the most recent year in the Version 3.0 dataset.

Ontario Severe Rainfall Trends Climate Change Effects on Extreme Weather
Southern Ontario Observed Maximum Rainfall Trends - Environment and Climate Change Canada
Engineering Climate Datasets - Version 3.0
Trend Direction and Significance for 21 Climate Stations with Long Period Records (Greater than 30 Years)



Other observations:

  1. There are no statistically significant increases for durations less than 6 hours - that means the short duration convective storms burst that can lead to urban flooding related to most infrastructure systems do not show any appreciable increases.
  2. Overall downward trends are contrary to insurance industry statements, particularly the disproved "Telling the Weather Story" claim that there has been a one standard deviation increase in the probability of extreme rainfall according to Environment Canada data (the "Story" was only a theory/concept incorrectly cited and widely misreported as real data).
  3. Overall downward trends are contrary to many media reports citing a new normal of wild weather. Fortunately, some media, lead by the the Financial Post's Terence Corcoran are engaged in a critical review of urban flood drivers including extreme rainfall and the means to mitigate flood damages:
  4. CBC staff and the CBC Radio Canada Ombudsman have helped focus on facts Environment and Climate Change Canada data and corrected many stories on increasing storm frequency or intensity as noted here:
  5. Analysis by the School of Engineering at the University of Guelph, published in the International Journal of Environmental Research in 2015, looked at monthly trends and suggested that "The decrease in August extremes seems to have a significant impact on the annual extremes in the southwest and southeast regions": https://drive.google.com/file/d/1AngUYFFlm-RqQlmSC0gZqxy8nV61BW8J/view

Urban flooding is certainly an important issue to be addressed. And there are many factors that affect today's flood risks as explored in a previous post. While the insurance industry has suggested a link between increasing flood damages to increasing rain extremes due to climate change, given the wealth of evidence pointing to other quantifiable factors like increasing hydrologic and hydraulic stresses - and no change in rainfall extremes! - means that there is not even a correlation much less a causation relationship between flood damage and rain extreme trends (i.e., damages are up but rain intensities are down). This was pointed out in my Financial Post OpEd

Effective flood mitigation strategies must recognize the intrinsic capacity limitations in the vast amount of legacy infrastructure built over 30 years ago, and focus on reducing risks by addressing any level of service gaps through adaptation. Cost-effective and timely methods can include increasing the conveyance capacity of grey infrastructure, as opposed to mitigating rain/weather stresses that have not appeared to change, based on official, national engineering datasets. While such infrastructure investments should consider potential future climate effects, and we have many examples of analyzing stormwater and wastewater systems for such effects, past trends do not point to an increase to date in rainfall extremes. As a result, derived intensity duration frequency values for the stations reviewed above, based on values in the Version 3.0 datasets, shows an overall decrease in design intensities for small frequent and large rare storms across southern Ontario - those results were presented in a previous post, as shown below:

Ontario extreme rain IDF trends
Ontario Intensity Duration Frequency (IDF) Trends - 2 Year to 100 Year for all Durations
Environment and Climate Change Canada Engineering Climate Datasets - Version 3.0

Recognizing trends in observed rainfall maximum values and the derived design intensities will support data-driven, evidence-based policies and programs for achieving flood resilience through strategic infrastructure investments.

***

The following table explores annual maximum values at Ontario climate stations with over 50 years of record:
Ontario Extreme Rainfall Severe Weather Storm Trends
Ontario Observed Maximum Rainfall Trends - Environment and Climate Change Canada
Engineering Climate Datasets - Version 3.0
Trend Direction and Significance for 11 Climate Stations with Long Period Records (Greater than 50 Years)

The table expands into higher latitude eastern Ontario communities including Kingston and Ottawa as well as to northern Ontario. The eastern Ontario climate stations show an overall consistent trend in decreasing observed rainfall maxima over the shortest durations. Another eastern Ontario station, the Ottawa Airport also shows decreasing trends over short durations, including several statistically significant decreases (i.e., lower observed rainfall intensities) for durations of 10 minutes, 15 minutes and 1 hour.

Previous analysis of the Version 2.3 datasets showed the differences in southern and northern Ontario trends. Increases in intensities in the north, beyond Ontario's largest urban centres, could reflect a shift toward more rainfall events instead of snowfall as a result of warming temperatures. 

Ontario Overland Flood Risk Mapping - Risk Screening Mapping to Identify Urban Flood Risk Zones Beyond Regulated Valleys

Overland flood risks often result in water damage in vulnerable urban areas. New Ontario mapping of surface drainage flow paths can identify the highest risk areas, specifically those around buildings and beyond river flood plains.

Why Is Overland Flood Risk Mapping Needed?

Analysis of historical flooding in Toronto in May 2000, August 2005 and July 2008 has revealed that basement flooding is correlated with overland flow and topographic risk factors. A building's footprint within the overland flow path is an obvious indicator of surface water damage potential - that is, water encompassing a building and entering its openings. But the proximity to the overland flow path, and its ability to negatively influence the neighbourhood wastewater system with extreme weather inflows, has also been show to be an indicator of sewer back-up risk. In this manner the overland flow spread influences flood risks on a broader spatial scale beyond the narrow overland flow path alone.

How Does Overland Flood Risk Mapping Relate to Flood Plan Maps?

Overland flood risk mapping is the natural extension of river risk mapping, up beyond the valley flood plain limits, and across 'table land' as they say in the development industry. Typically in Ontario, regulated valley areas incorporate a range of natural heritage features and hazards including flood plain, watercourse meander belt width, and unstable valley wall slopes. On table land, overland flood risk hazards run across roadways and the developed lot fabric of our cities, sometimes confined in drainage features, or sometimes not. Overland flow zones typically do not coincide with natural heritage features. like vegetated valley flood plains do.

Who Maps and Manages Overland Flood Risks?

Sometimes nobody. After all, without natural heritage features, there is less to protect under Ontario's provincial policy statement. And because the overland risks emerge on such an infrequent basis (during the most extreme rainfall events), they are not top of mind, nor are they easy to define. Progressive cities like the City of Toronto has an aggressive basement flood reduction program that assesses overland drainage systems and identifies risk management alternatives. But these overland systems are typically developed only in specific remediation areas, incorporated into InfoWorks models and characterized in Class Environment Assessment reports.

Nobody?

Well, in some isolated cases overland flood risks are mapped and managed in the same manner as regulated valley flood plains by Ontario conservation authorities. Typically these are areas of isolated watercourse enclosure where extreme rainfall runoff overwhelms the sewer or culvert conveyance system and flows over land. Almost exclusively, however, flood plain risk maps stop at the conveyance system outlet (i.e., headwall / outfall) and do not extend further up onto table land.

What About Insurance Industry Mapping?

Overland surface flooding flood risks, sometimes called pluvial flood areas, are mapped by companies such as JBA and used by insurance companies as input to insurance business decisions (where to insure, setting appropriate risk-based premiums) - but mapping is proprietary, and results are not used for regulation or risk management purposes. Rather, surface flood risk mapping is a business service.

Where Are Ontario City's Predominant Flood Risks?

In overland flood risk zone, not flood plains - in fact in Toronto 98% of flooding in the last three large storms was beyond river flood vulnerable areas. This is consistent with Conservation Ontario figures that identified the percentage of Ontario properties in flood plains to be in the low, low single digits.

Show Me !

Below are a couple images of overland flood risk zones derived for the Ontario South-West digital elevation model zone. The first is the chronically flooded Newtonbrook area in Toronto, and the second is the chronically flooded Brydges-Elgin area in Stratford (subject of a settled class action lawsuit).

The large map shows the topography used to identify overland flow path alignment / upstream slope for hydrologic peaking factor / contributing drainage area / overland network reach conveyance slope, and land use used to assess contributing area composite runoff coefficient.

The inset maps shows the overland flow path spread during a 100 year peak flow, and multiples of the flow path that can indicate risks to adjacent properties connected by wastewater systems. The overland flow network is defined for all drainage areas over 3 hectares in size up to 1000 hectares in size. Typically, flood plain mapping is available for the largest drainage areas and would overlap the overland flow path limits. The inset maps shows the overland flow path on an Open Street Map base, revealing where the overland flow path affects buildings and built-up areas.

Currently overland risk zones are refined for south and south western Ontario (excluding the Ottawa River basin). This represents over 800,000 overland flow segments in the major drainage network. We are evaluating distribution methods in order to share these results as well as input layers that can be used to support refinements by others. Stay tuned!