Showing posts with label flood causes. Show all posts
Showing posts with label flood causes. Show all posts

Is Climate Change Making Flooding Worse? - Stormy Data Trumps Fake News on Extreme Weather Trends and Flooding

From the Toronto Star: "Once, when he [Environment Canada's Dave Phillips] offhandedly uttered the words “storm porn” in a pre-interview, a TV reporter built a whole segment around the phrase, because there is only one thing editors and the public crave more than a weather story or a sex story, and that is a sexy weather story." link

***

"Stormy Data" is in the news almost daily - the media is obsessed with stories about big rain events and flooding - but sometimes the media is full of "weather porn", i.e., sensational stories and video clips that skew the reality behind severe flooding events. Certainly flooding is a critically important issue across Canada that needs careful and sustained attention to make improvements. But the focus on changing weather as the cause is often incorrect, and the tendency to point to climate change as the cause is equally wrong... Fake News. Fake News! Confused Media!

This post talks about storm porn (sometimes used in insurance marketing), flood loss trends in Canada and the causes, and a history of flooding in the Toronto area that suggests flood events and road/bridge washouts were more frequent in the past before modern floodplain management and design practices. That is good news that Best Practices can reduce flood risk over time!

On Weather - More Extreme? No. Its Storm Porn

Almost 30 years ago we has a cable weather channel that was had simple weather forecasts on the 'tube' (The Weather Network History). Today The Weather Network gives us:

"Force of Nature - (Featured every 20 minutes on the 3's, a show-reel of significant weather making headlines around the world), and Force of Nature Extended segment where a news reporter gives an in-depth description of the footage shown."

and "Storm-Hunters - weekends at 7 and 10pm." and "Angry Planet".... - I call this "storm porn", or "weather porn".

And no fallen limb or large puddle escapes weather reporting. Reporters know to go to the underpasses because they flood in extreme weather ... just like they are designed to - but there is no capacity in weather reporting or mainstream media to even remotely consider these design facts. It is better for business to sensationalize the events. What is better for science and public policy however?

But storms are not bigger or more frequent, or more sever today than they used to be - Environment and Climate Change Canada's Engineering Climate Datasets (Version 2.3) show this, despite what the insurance industry has stated (unfortunately by mixing up predictions with observations, theory with facts, annual precipitation totals with short-duration rain bursts):



Intact Financial Weather Frequency Shift
Intact Financial video promotes disproved 40 year to 6
year weather shift (Telling the Weather Story).
The insurance industry does not properly consider storm/weather data that engineers rely on to assess flood risks and continues to state that "In Canada, weather events that used to occur every forty years are now happening every six years in some regions"  as in this video on their web site/blog. That statement about more frequent weather has been shown to be a 'made-up', theoretical bell-curve shift and not actually real data.




On Flood Causes - Many Factors

Flood incidents are caused by many factors. For example, high risk, historical land use planning:
  1. Gatineau 2017 flooding was due primarily to having 75% of buildings in the 1-in-20 year flood plain, a high risk zone that has a 5% chance of flooding every year.
  2. Toronto Island 2017 flooding was due primarily to not completing the buy-outs of the remaining high risk properties.
Or sometimes operational decisions (mistakes) result in flood incidents. The 2013 GO Train flood is a clear example of known floods risks and inadequate operational care - deeper flooding happened regularly at the stranded train site (even just 6 weeks before), and happened over the span of the line's operation, dating back to the early 1980's. But no operational procedures were in place to check water levels or stop trains from entering the floodplain. When the last train was stranded on July 8, 2013, the Don River Watershed did not receive record rain at all and the river flow was a less than a frequent 1-in-5 year flow rate, something with a 20% chance to occur every year. 

Or sometimes stuff was just built kinda small back in the day. That's right. Infrastructure is just like cars or anything else and used to be built to a lower standard of performance - cars did not have seatbelts or anti-lock brakes and guzzled gas in the 1950's. Similarly, sewer and drainage systems in the 1950's were prone to excess wet weather flow inflow and infiltration (I&I) stresses, inadequate overland flow planning/design, and no river flood hazard mapping or land use regulation.

Or the cumulative effect of urbanization and intensification over a century in urban areas aggravates the issues associated with the factors above. Same old rain results in more flooding.

How many times do we have to say it? "There has been No Collusion between storm frequency and flood frequency". OK, we meant "No Causation", but you get the message.

On Flood Damages / Losses

Damages need to be mitigated. I charted out a Best Practices approach for identifying and mitigating flood risks holistically from 'flood plain to floor drain', looking at riverine, storm and sanitary/wastewater systems in this blog post.

Insured and uninsured losses from catastrophic and relevant events in Canada are charted by Munich RE. These flood losses include categories of hydrologic events and meteorologic events (hurricanes) that are normalized by inflation and growth in GDP to provide an indication of trends over time. The chart below shows flood losses between 1980 and 2017 in Canada:
Canadian Flood Damage Trends Insurance Losses
Canadian Catastrophic and Relevant Event "Flood" Losses, Inflation and Growth Adjusted for Hydrological and Meteorological Events in USD - Prepared by Munich RE NatCatSERVICE.
Losses are creeping up. We do have to address flood risks.

On Flood Frequency - New Normal? Or Old Extremes?

We have a tendency to forget the past. Its not well documented or easy to find.  So this should help.

The Toronto and Region Conservation Authority has documented past flooding in its jurisdiction showing flooding back to 1804 in this undated document called "A History of Flooding in the Metropolitan Toronto and Region Watersheds":

Link to full report.

The report acknowledges that prior to 1850, records of flooding are limited and suggests that many have been lost -  those that survived are in letters and diaries, and do not give a complete picture of past flooding risks.

This is noted in the excerpt below:



Some nice take-aways:

We build better today: "Over the years, road bridges became higher and stronger in response to the changing type and volume of traffic that they were required to carry. Consequently, reports of bridges descruction became rarer over time."

We keep better records today: "... newspapers and other sources tended to record only the most severe events, particularly in areas which flooded almost every spring."

Seems we used to flood A LOT in the past: The number of flood events documented by watershed and tributary/site are listed below. Often small bridges were destroyed but are not listed below. Where major road bridge's were damage and had to be replaced, or where roads washed-out, those events are noted below as "Notable Events". Mill destruction was frequent but is not noted:

Etobicoke Creek Watershed
- Long Branch - 1930 to 1954 - 9 flood events (7 in the spring)
- Brampton - 1854 to 1974 - 22 flood events (13 in the spring)
- Highway 7 at East Branch - 1968 - 1 flood event
- Tributary near Dixie Road and Dundas Street - 1974 - 1 flood event

Total Number of Documented Flood Events = 33
Notable Road and Bridge Destruction Events: 1
- Brampton April 7, 2012 "severe damage to roads, bridges, buildings"

Mimico Creek
- "No flood records have been kept..."
- 2 floods are listed, in 1850 and 1954

Total Number of Documented Flood Events 2

Humber River
- Bloor Street Bridge - 1850 to 1954 - 7 flood events
- Lambton Mills - 10 flood events (5 in the spring)
- Eglinton Flats - 1804 to 1954 - 10 flood events (5 in the spring)
- Weston - 1842 to 1954 - 10 flood events (7 in the spring)
- Albion Road Bridge - 1850 to 1954 - 6 flood events (4 in the spring, Feb-May)
- Thistletown -1878 to 1954 - 4 flood events (2 in the spring)
- Gristmill, Holm, Cord - 1850 to 1893 - 4 flood events (2 in the spring)
- Humber Summit, Rowntree's Mill - 1850 to 1893 - 5 flood events (4 for mill and 1 for subsequent cottages)
- Sawmill J. Brown - 1850 to 1893 - 4 flood events
- Woodbridge - 1878 to 1961 - 19 flood events (13 in the spring)
- Mills on Main Branch - 1850 to 1925 - 6 flood events (5 in the spring)
- Bolton - 1850 to 1972 - 22 flood events (18 in the spring)
- Mills on the Upper Humber River - 1850 to 1909 - 4 flood events (3 in the spring)

Total Number of Documented Flood Events = 111
Notable Road and Bridge Destruction Events5
- Weston, October 15-16, 1954, "Lawrence Avenue Bridge destroyed"
- Eglinton Flats, June 3, 1947. "roads washed out, buildings flooded"
- Humber River, Bloor Street Bridge, Spring 1916 "completely washed out"
- Woodbridge, August 5, 1882 "approaches to bridge on main road washed out"
- Woodbridge, January 13, 1937 "roads flooded and some washed out"

Black Creek
- Floodplain near Mt. Dennis - 1878 to 1954 - 5 flood events (3 in the spring)
- Maple Leaf Drive Area - April 5, 1951 - 1 flood event (in spring)
- Tributary - March 12, 1959 - 1 flood event (in spring)

Total Number of Documented Flood Events7
Notable Road and Bridge Destruction Events2
- Near Mt. Dennis, September 13, 1878, "railroad bridge and bridge on Weston Road destroyed"
- Near Mt. Dennis, May 14, 1893, "bridges destroyed"

Don River
- Lower Don - 1804 to 1954 - 19 flood events (15 in the spring)
- Riverdale Flats - 1804 to 1970 - 19 flood events (15 in the spring)
- Mills Taylor Family - 1850 to 1902 - 5 flood events (4 in spring)
- Mills on Lower East Branch - 1850 to 1902 - 5 flood events (4 in spring)
- Sheppard Avenue Bridge - October 15-16, 1954 - 1 flood event
- Cummer Avenue Bridge - February 11, 1965 - 1 flood event (in spring)
- Gristmills - 1850 to 1881 - 4 flood events (3 in the spring)
- Thornhill - 1850 to 1975 - 11 flood events (9 in the spring) - 11 listed, report cites 12
- Mills and Small Dams, 1850 to 1881, 4 flood events (3 in the spring)
- Yonge Street at Highway 7, 1943 to 1975, 5 flood events (4 in the spring)
- Highway 7 Bridge, 1943 and 1950, 2 flood events (in the spring)
- Gristmill, Hosiel, 1835 to 1881, 5 flood events (4 in the spring)
- Bayview Avenue Bridge, 1850 to 1954, 4 flood events (2 in the spring)
- Hogg's Hollow, 1850 to 1954, 6 flood events (4 in the spring)
- Gristmill, Boyle, 1850 to 1881, 4 flood events (3 in the spring)
- Bathurst Street Bridge, October 15-16, 1954 - 1 flood event
- Mills on West Branch, 1850 to 1881, 4 flood events (3 in the spring)
- Highway 7 Bridge, 1943 to 1975, 4 flood events (3 in the spring)
- CNR Bridge Near Concord, 1878 to 1954, 3 flood events (1 in the spring)
- Small Dam, Lamer, 1850 to 1881, 4 flood events (3 in the spring)

Total Number of Documented Flood Events 111
Notable Road and Bridge Destruction Events13
- Lower Don, April 5, 1850, "Queen Street bridge destroyed, as well as Kingston Road bridge"
- Lower Don, September 13, 1878, "bridges destroyed at Gerrard Street, Queen Street, Kingston Road, as well as many smaller ones"
- Lower Don, February 28, 1902, "roads washed out"
- Sheppard Avenue Bridge (Sheppard Avenue and Leslie) , October 15-16, 1954, "Destroyed during Hurricane Hazel"
- Thornhill, April 5, 1850, "100 feet of Yonge Street washed out"
- Thornhill, spring 1943, "Yonge street washed out in several places"
- Bayview Avenue Bridge, April 5, 1850, "destroyed"
- Bayview Avenue Bridge, September 13, 1878, "destroyed"
- Bayview Avenue Bridge, October 15-16, 1954, "destroyed"
- Hogg's Hollow, April 5, 1850, "approaches to Yonge Street bridge washed out, bridge isolated"
- Hogg's Hollow, October 15-16, 1954, "Yonge Street bridge washed out"
- Bathurst Street Bridge, October 15-16, 1954, "Destroyed"
- CNR Bridge Near Concord, September 13, 1878, March 10-11, 1936, and  October 15-16, 1954, "The railroad was washed out"

Highland Creek
- Cottages and Highland Creek Drive, 1936 to 1977, 24 flood events (20 in the spring)
- Gristmill, Helliwell, 1869 to 1878, 2 flood events (1 in the spring)
- Highway 2 or Kingston Road Bridge, 14 flood events (12 in the spring)
- Sawmill, 1869 to 1878, 2 flood events (1 in the spring)
- Cottages at "The Willows", 16 flood events (14 in the spring)
- Scarborough Golf and Country Club, 1950 to 1977, 19 flood events (16 in the spring)
- Sawmill, 1869 to 1878, 2 flood events (1 in the spring)
- Military Trail Bridge, 1948 to 1977, 19 flood events (15 in the spring)
- Sawmill, 1869 to 1878, 2 flood events (1 in the spring)

Total Number of Documented Flood Events100
Notable Road and Bridge Destruction Events4
- Cottages at "The Willows", February 15, 1949, "roads washed out"
- Cottages at "The Willows", July 4, 1951, "roads washed out"
- Cottages at "The Willows", October 15-16, 1954, "roads, bridge near present Lawrence Avenue washed out"
- Military Trail Bridge,  August 27-28, 1956, "bridge destroyed"

Rouge River
- CNR Bridge, April 10, 1973, 1 flood event in spring
- Highway 2 of Kingston Road Bridge, 1878 to 1956, 5 flood events (3 in the spring)
- Caper Valley Ski Hill, February 2-3, 1978 , 1 flood event in spring
- Meadowvale Avenue Bridge, October 15-16, 1954, 1 flood event
- Mills, 1878 to 1929, 3 flood events (2 in the spring)
- CPR Bridge, October 15-16, 1954, 1 flood event
- Mills below Markham, 1878 to 1929, 3 flood events (2 in the spring)
- Markham, 1837 to 1973, 7 flood events (4 in the spring)
- Unionville, 1878 to 1973, 6 flood events (3 in the spring)
- Mills and Dams, 1878 to 1929, 3 flood events (2 in the spring)
- CNR Tracks, July 19, 1944, 1 flood event
- Mills, 1878 to 1929, 3 flood events (2 in the spring)
- Rouge Valley Inn, October 15-16, 1954, 1 flood event
- Mills on the Little Rouge, 1878 to 1929, 3 flood events (2 in the spring)
- Con.9 Markham Township, 2 flood events (2 in the spring)
- CNR Bridge, 1947 to 1954, 2 flood events
- Mills and Small Dams, 1878 to 1927, 3 flood events (1 in the spring)

Total Number of Documented Flood Events46
Notable Road and Bridge Destruction Events6
- Markham, May 16, 1937, "bridge washed-out (on present Hwy. 7)"
- Markham, October 15-16, 1954, 'town "marooned" by Hwy. 7 washouts on both east and west sides'
- Unionville, October 15-16, 1954, "Main Street washed out north of Hwy. 7"
- CNR Tracks, July 19, 1944, "The tracks were washed out"
- CNR Bridge, August 18, 1947, "Washed out"
- CNR Bridge, October 15-16, 1954, "Washed out" "passenger train partially derailed"

Duffin Creek
- Gristmill, 1878 to 1919, 3 flood events (1 in the spring)
- Pickering Village and Cottages on Riverside Drive, 27 floods (24 in the spring)
- Mills on West Branch, 1878 to 1890, 2 flood events
- Whitevale, 1878 to 1950, 5 events (3 in the spring)
- Green River, 1878 to 1954, 6 events (3 in the spring)
- Mills between Stouffville and Green River, 1878 to 1919, 3 flood events (1 in the spring)
- Stouffville, 1878 to 1972, 10 flood events, (7 in the spring)
- Mills and Small Dams, 1878 to 1919, 3 flood events (1 in the spring)
- Greenwood, 1878 to 1956, 7 flood events (4 in the spring)
- Mills on East Branch, 1878 to 1919, 3 flood events (1 in the spring)

Total Number of Documented Flood Events = 69

Grand Totals:
Total Number of Documented Flood Events = 479
Notable Road and Bridge Destruction Events31

So yes, we have always had many floods in the past and many road, bridge and rail washouts too. And urban areas have expanded considerably since 1804, meaning more places to experience high rainfall and more runoff (before we started to practice better stormwater management quantity control). While the loss of Finch Avenue during the August 19, 2005 storm was significant, we have not had any major road or bridge washouts since, only Military Trail Bridge, August 27-28, 1956 which it is noted "has not been redesigned and remains low and vulnerable to flooding". So despite high runoff stresses and more and more crossings, the loss of roads and railways has not been an issue. This suggests that today's floodplain management and hydraulic structure (i.e., bridge and culvert) practices are largely effective as well, resulting in overall resilient infrastructure.

The TRCA flood history report notes wet cellars or basements for only a couple of the nearly 400 events. That is in contrast with today when it is basement flood damages that are driving flood losses in southern Ontario, not riverine flooding.

***

Interesting comment on land use planning practices:
- in Hogg's Hollow, "All of the houses flooded during Hurricane Hazel remain in the floodplain, and several more have been built" ... obviously this just adds to old risk
- in The Willows, "The cottages at The Willows which survived Hurricane Hazel were removed shortly afterwards, and the valley is now parkland" ... and this is the best way to remove risk in the highest risk zones


Toronto GO Train Flood Avoidable July 8, 2013 - Worse May 29, 2013 Flood Ignored



Could the stranded GO Train in Toronto's Don River valley have been avoided on July 8, 2013? Could use of known flood risk mapping and real-time flood level monitors avoided the near catastrophe? Yes. And yes and yes. In fact, on May 29, 2013 flooding was deeper but the peak at 5 a.m. missed the trains!

It is likely that if there had been fatalities among the 1400 GO Train passengers, Metrolinx employees or Toronto's first responders, the Ontario government would have called an inquiry (see clipping at right). The Ministry of Labour, who recognizes the occupational health and safety hazards of flooding,  would likely have found that Metrolinx failed to identify known workplace hazards or identify safe work practices for its employees.

And that provincial inquiry would have revealed that:

GO Train Stranded Flood Toronto
Mock Go Train Drowning Inquiry newspaper clipping.  This near miss could
have been fatal to passengers, Metrolinx workers, or first responders.
i) flood risk of the rail line was known to be frequent from available flood hazard maps and reports (best and most frequently updated hydrologic modelling of flows and hydraulic modelling of flood levels in Canada actually),

ii) July 8, 2013 observed flow rates and flood levels were not rare or unexpected from a flood risk management perspective - i.e., could have been anticipated - in fact, on May 29, 2013, just 40 days and forty nights before the incident, flood levels peaked 20 cm higher,

iii) monitoring real-time flood levels were rising rapidly upstream of and beside the flood site could have guided train dispatchers to not send the 5:30 train (GO Transit 835) into the flooded Don River valley,

iv) train frequency increase (more than rain frequency) contributed to the near tragedy, and increased risk exposure as the number of Richmond Hill trains on this line doubled since 1996,

v) any tragedy that occurred was avoidable.

Inquiries get to the bottom of risk issues following deaths. For example, the Walkerton Commission of Inquiry has resulted in a comprehensive risk management strategy for managing drinking water risks in Ontario. But this was only after Walkerton’s drinking water system was contaminated with deadly bacteria, seven people died, and more than 2,300 became ill. The goal of the Inquiry was to answer questions:
GO train Flood
GO Train Flood July 8, 2013 - Toronto Don River Valley
  • What actually happened?
  • What were the causes?
  • Who was responsible?
  • How could this have been prevented?
  • How do we make sure this never happens again?
Let's look at the same questions in the context of the Metrolinx Richmond Hill train flood incident in 2013.

What Actually Happened?

The GTA Don River Watershed (correction to original post Jan.2, 2016) received up to 126 mm of rainfall on July 8, 2013.  That is a lot of rain and runoff was high, resulting in flood warnings and high flood levels at the Don River flood monitoring stations.

River levels at the upstream East Don River flood level monitoring site (TRCA's East Don at York Mills HY022 gauge) were already rising when the previous by "5:00 pm" train level Union Station. Upstream flood levels were even higher when the stranded "5:30" train, Go Transit 835, left Union Station - this warning sign was not used by Metrolinx to assess the risk to their route further downstream.  Graphs are generated from TRCA's online archive.

Go Train Flood Toronto
Recorded East Don River at York Mills Flood Levels July 8, 2013 (per TRCA)
5:30 Richmond Hill GO Train departed Union Station after upstream flood levels has already risen rapidly.

Why did the 5:30 train leave when the upstream flood levels pointed to potential risks?
What Were the Causes?
Metrolinx GO Train frequency has doubled from 3 to 6 return
trains per day from Union Station to Richmond Hill since 1996.

Cause 1). Train frequency has doubled over the past 19 years, increasing exposure to flood events.

The Richmond Hill GO Train service started in 1978 and frequency has increased.  In 1996, service was cut to 3 trains per day while currently there are 6 trains during the afternoon / evening period (a 100% increase in risk exposure).

GO Train flood Toronto
Train operation was halted or detoured during previous Don River floods
as documented in the 1981 Flood Inquiry Report.
Cause 2). The track floods frequently due to summer storm events (or spring melt).

The Keating Channel Flood Inquiry Report for Premier Davis in 1981 documented frequent flooding decades earlier, even when urbanization of the Don River Watershed was not as intense as it is now.

Cause 3). Water levels rose to expected design flood levels on July 8, 2013, but measurements were ignored / not considered.

The key concern here is that design flood levels experienced on July 8, 2013 were not rare (see footnote 1 on correlation of storm vs. flood severity).  The 2-year return period flood level is 79.45 metres near the Evergreen Brick Works, across from the flooded GO Train site. In common terms, this flood level can be expected every 2 years, and so over a long period, it has a very high risk of occurring (about 17 times between the start of service in 1978 and the flood of 2013).

Higher safety-risk flood levels of one metre higher are not rare from a flood risk management perspective.  Even a higher 10-year flood level (80.41 metres) has a 88% risk of happening at least once over 20 years. This is illustrated on the graph below which compares expected design flood levels, risk of reaching these levels over time, and actual real-time flood levels recorded July 8, 2013. These design flood levels are from a Evergreen Brick Works presentation and, a site located beside the stranded train location - the Brick Works has a comprehensive flood risk management strategy.
GO Train Flood Toronto
Recorded Don River Flood Levels at Todmorden July 8, 2013 (per TRCA).
Design Flood Levels per MMM (2008) per Evergreen’s Urban Watershed Forum 2015.
Flood risks were known. Upstream flood levels had risen. Local flood levels were rising.














So, the causes include more frequent trains travelling through a highly flood prone part of the Don River valley, and the operator Metrolinx having ignored measured flood levels.

Surprisingly - even higher flood levels were recorded on May 29, 2013 but trains missed this peak due to timing. The May 28, 2013 Union Station departures occurred before the rise in flood levels and the May 29, 2013 Richmond Hill trains arrived near Todmorden after the peak flood levels has subsided (GO Transit may have modified schedule). The maximum track flooding on May 29, 2013 appears to be 20 cm deeper than on July 8, 2013 - rainfall in East York was over 40% greater.
Worst GO Train Flood Toronto
May 29, 2013 flooding is deeper than July 8, 2013 flooding based on TRCA Todmorden Flood Monitoring Gauge.
The May 29, 2013 flood would have flooded tracks by almost 2 metres.
GO Trains appear to have missed peak flood depths by departing before and after peak flood level occurred.

Worst Metrolinx Flood
May 29, 2013 flood flow rates at the incident site higher than July 8, 2013 flood flows by 10 cubic metres per second.
TRCA from Todmorden Flood Monitoring Gauge
GO Train Flood
May 29, 2013 Flood Levels Worse Than July 8, 2013
But even May 29, 2013 flood levels were not unprecedented according to Toronto Police.  That flood closed the Don Valley Parkway, left it covered in mud and according to reports by City News:

“I haven’t seen flooding on the Don Valley Parkway like this,” Toronto police Staff. Sgt. Brian Bowman told Breakfast Television. “One of my officers had, back in 1986. He saw it reach the top of the [concrete] jersey barriers, so it’s not unprecedented.”

Not only were flood levels July 8, 2013 not rare, flows were below common design flow rates (see footnote).

Who Is Responsible?

In Ontario, everyone is responsible for safety in the workplace. Employers and employees have a role. Reports suggest that Metrolinx, the employer, did not receive TRCA flood warnings and did not make use of monitored flood levels in the watershed to inform its operations. Perhaps it did not understand the workplace hazards on the Richmond Hill line.

GO Train Flood Safety
Ontario Ministry of Labour identifies drowning and other risks associated
with flooding.
After the incident, Metrolinx dismissed the value of TRCA flood warnings saying to the National Post “Because the TRCA flood warning was fairly general, it only has limited value,” said Greg Percy, the Metrolinx vice president of infrastructure. It is understandable that weather warnings do not always translate into actual flood conditions.  But Metrolinx did not acknowledge the use or value of measured flood levels, including those upstream on the East Don tributary and those adjacent to the flood-prone tracks at the nearby Todmorden flood monitoring gauge.

Evergreen Brick Works beside the stranded GO Train site has a flood
emergency plan and its building are flood proofed. Brick Works reported
higher flooding in May 2013 than July 2013 on their site.
It would appear Metrolinx was responsible for not assessing workplace hazards for its employees and customers.  Also, it did not develop safe work practices and procedure that would allow it to identify flood risks and take appropriate action (cancel service, substitute buses instead of trains, divert to Barrie line, etc.). Employers like Evergreen Brickworks have had flood emergency planning in place for many years as the location is known to be highly flood prone.

TheStar.Com reported two days after the July 8, 2013 incident that stranded customers were offered $100 as compensation and Mary Proc, GO vice-president for customer service said "It is an exceptional gesture for an unprecedented circumstance." She did not acknowledge that while the inconvenience to passengers was unprecedented, the flood levels were not. She added “That was a night of firsts for us: The first time we had a month of rain in one night; the first time that any customer had to wait seven hours to be moved off a train, and the first time we deployed boats to take our customers off a train.” She did not acknowledge that more rain, more runoff volume, higher flow rates and higher flood depths occurred on May 29, 2013, or that a month of rain in one night is not an uncommon design event for prudent flood risk management. GO Transit (@GOTransit) did Tweet about Richmond Hill line disruptions at 3 a.m. on May 29, 2013 suggesting perhaps they are aware of flood conditions on the line before scheduled morning trains:



How Could This Have Been Prevented?

The East Don flood level graph above showed that the Don River had risen quickly by 5:30 p.m.. The graph below shows that flood levels where the train was stranded had risen nearly half way between the normal water level and the track level by 5:30 p.m..  By the time the stranded GO Train approached the Brickworks at 5:45 p.m., the real time level monitoring would have shown the Don River flood levels approaching the track - see graph below.  But these levels were not used by Metrolinx.

Go Train Flood
Track level is below the frequent flood zone (2-year flood). The 5:30 p.m. Richmond Hill GO Train departed when upstream and local flood levels were rising. The GO Train was stranded at 5:45 p.m. when flood levels were at frequent flood levels - not even up to the 2-year flood level of 79.45 m.

This accident could have been prevented by having operational procedures included checking monitored flood levels and modifying service to avoid sending trains onto flooded tracks.

How Do We Make Sure This Never Happens Again?

GO Train Flood
Environmental Commissioner mistakenly links GO Train flooding to
climate change, ignoring known risk factors, watershed conditions,
and operational gaps contributing to flood risk and damages.
According to the Environmental Commissioner of Ontario, the commuter train flooding is a symptom of climate change (Feeling the Heat: Greenhouse Gas Progress Report 2015 Media Release).

Obviously that is not an informed statement. By linking the GO Train incident to climate change and suggesting that risk mitigation efforts relate to emissions controls, the fundamental causes, responsibilities, and potential solutions to the near tragedy have all been grossly ignored.

To ensure this never happens again Metrolinx has had to suffer through 'near miss' in occupational safety terminology. Putting on a positive spin at their September 10, 2013 customer service update, Metrolinx suggested they received as many commendations as complaints (perhaps the commendations were directed to first responders?).  Metrolink also highlighted the 126 mm of rainfall in the "Toronto area", failing to note that record was at Pearson Airport in the Etobicoke Creek watershed, not the Don River watershed where GO Transit 835 was stranded. Also Metrolinx would look at several areas of concern including:

  • "identifying high risk areas,
  • improving customer messaging systems, and
  • upgrading the early warning storm warnings."


GO Train Flood Toronto Metrolinx
Metrolinx Customer Service Report September 2013 refers to 'massive' and 'record' storm as causes to the serious incident.

Metrolinx could identify high risk areas by reading the Flood Inquiry report from 1981 (a real Inquiry for Premier Davis ... not the mock one at the start of this post).  It identifies railway line damage and flooding during ice-free conditions (i.e., no ice blockage of bridges) during the "Great Flood" on September 13, 1878, the spring of 1914, and during two storms in 1980 (March and April). Limited flooding was also reported on May 11, 1981 including the area of the Bayview Extension and the Toronto Brick Yards (the stranded GO Train location near the Evergreen Brick Works).  The report indicates that train operation has halted, or trains were detoured during floods, including December 25, 1979, January 11, 1980, March 21, 1980, April 14, 1980, February 11, 1981 and May 11, 1981.

go train flood
Example historical flooding in vicinity of stranded GO Train during July 8, 2013 flood (1981 Inquiry report Table 1).
According to the 1981 Flood Inquiry report, during the March 21, 1980 flood "Part of the CNR track flooded to the north and east of a point south of Bloor Street."  The 20 hour low intensity spring storm produced high runoff as ground in the watershed was partly saturated and frozen.  This area north of Bloor Street corresponds to the location of the July 8, 2013 Go Train flood.  During the April 14, 1980 flood, after a 5-6 hour period of rain, CNR tracks at the Bloor Street ramp were flooded. The GO Train was stranded just east of where the Bloor Street ramp connects to the Bayview Ave.

GO Train Flood Passenger Swimming
GO Train / GO Transit 835 passenger swimming from
stranded train in Don River valley.
The following summer on June 26, 2014 InsideToronto.Com reported "Metrolinx is crediting recent improvements to its flood monitoring protocol in lessening the impacts to morning GO Transit commuters following a severe rainstorm." Metrolix reported that "Three GO trains en route to Union Station were also diverted from the Richmond Hill to the Barrie rail corridor to avoid the flooded tracks.".  This was after a moderate storm described as an "event which dropped some 50 millimetres of rain in the Don Valley alone, according to Environment Canada.". A 50 millimetre rainfall event is less severe than a common 5 year / 12 hour event, or  10 year / 6 hour event, meaning the track did, does and will flood frequently.


GO Train Flood
It is unlikely that Metrolinx would admit that the July 8, 2013 flood was a common design condition for flood risk management, and that it was perhaps just lucky in its complacency / ignorance - May 29, 2013 flooding less than 6 weeks earlier was worse. Fortunately complacency is no longer the case and it is rerouting trains after even moderate design storms such as on July 26, 2014, June 22/23, 2015, October 28, 2015.......

A post below to the blog www.thiscrazytrain.com has a comment from an apparent operator indicating that the flooding of the tracks was indeed frequent and that the operating procedures have now changed.

Anonymous said...

Back when I started as long as we could still see the rails we used to drive through that like it was nothing. Now the second the water starts touching the rails an automatic system declares an 'emergency' and the whole line is shut down. Not saying that's the right or wrong way, but its interesting how times have changed.






*******
Footnotes:
1 - Correlations of Storm Severity vs. Flood Level Severity.  How could a record amount of rain have been recorded on July 8, 2013 but not a rare design flood level in the Don River flood plain?  The answer is that record amounts of rain did not occur everywhere across the Don River watershed - conservatism in flood risk management and planning assumes extreme rainfall occurs over the entire watershed. The record rain occurred over one small part of the watershed, such that the resulting flow rates were not extreme, having less than 10 year return periods. So while the record rainfall had a 100 year return period somewhere beyond the Don River watershed (Pearson Airport in the Etobicoke Creek watershed), on average, overall, July 8, 2013 was less severe over the large Don River watershed. The video at the very bottom of the post shows the July 8, 2013 storm pattern from historical radar over the approximate Don River watershed area.

GO Train Worst Flood
Worse Flooding May 29, 2013
The May 29, 2013 flood resulted in a higher flood level at the Todmorden monitoring station.  As reported by the Globe and Mail, less than half the July 8, 2013 rainfall fell on Toronto that day "In all, Toronto and the area north received up to 60 millimetres of rain before the downpour eased at around 6 a.m. No injuries or serious traffic accidents were reported." Our correction to that report is that at the Toronto East York Dustan climate station (ID 6158751) a higher 73.6 millimetres of rainfall was recorded (late on May 28, 2013 before the flood levels and flows crested the next day).

Half the rainfall and worse flooding? Yes. Welcome to the world of hydrology where the anecedent soil moisture conditions, and the temporal and spatial patterns of storms over watersheds affect the cumulative runoff volume which can influence the peak flow and peak water levels as much as any local 'spot' measurement of rainfall.

Toronto North York July 8, 2013
Rainfall Just Half Mississauga
Record Rainfall
On July 8, 2013, the rainfall across the Don River watershed was variable with much lower totals in the mid portion of the watershed. The Environment Canada historical climate archives show that the Toronto North York climate station (ID 615S001) measured only 65.8 mm of rain on July 8, 2013, just over half the Pearson record; the Toronto East York Dustan climate station (ID 6158751) measured only 51.4 mm of rain, less than half the Pearson total. Summary tables are shown below and at right (click to enlarge).

Despite this fact of lower, non-record Toronto-proper rainfall, the CBC reported the July 8, 2013 GO Train incident as a top weather story of 2013 saying:

"When you look at the amounts of rain that fell ... it was like Toronto was the bull's eye," said Phillips, who described it as "a direct hit with a drenching rain storm."

Toronto East York July 8, 2013
Rainfall Just Half Mississauga
Record Rainfall
The CBC News has mistaking described record rainfall in Mississauga (Pearson climate station location) and in the Etobicoke Creek watershed with moderate rainfall in Toronto in the Don River watershed (where the GO Train was stranded).  A watershed map is provided below.

The May 28-29, 2013 storm that caused higher flows and higher flooding on the GO Train tracks dropped 43% more rain than July 8, 2013 in the mid portion of the watershed according to the Toronto East York Dustan climate station records.

The CBC News story also fails to recognize the frequent flood-prone nature of the rail tracks where the GO Train was stranded. Such reporting is an example of "anchoring or focalism", the cognitive bias per Nobel Memorial Prize in Economics winner Daniel Kahneman, in which people rely too heavily on the first piece of information present (Pearson/Mississauga rainfall record) when it is in fact irrelevant to Toronto/Don Watershed flooding.

Here is a summary of mid watershed rainfall (East York), and flows and water levels (Todmorden monitoring site near the stranded GO Train site) for the May 2013 and July 2013 floods:

Date                      East York Rainfall      Peak Flow     Peak Flood Level
May 28-29, 2013           73.4 mm               190+ cms              80.9 m
July 8-9, 2013                51.4 mm               180+ cms              80.7 m

From a design storm perspective the recorded flow rates on May 29 and July 8 were low to moderate. The chart below from TRCA's Don River hydrology report shows a range of design flows from drought conditions, to average yearly peaks, up to rare storms considered for flood hazard management and design in Ontario. At less than 200 cms, both the 2013 peak flood flows were less extreme than the one-in-five-year design flow, a frequent design flow that has a 20% (1/5) chance each year of being exceeded.



Milli Vanilli "Blame it on the Rain" Meteorology Awards - 2015 Nominees

climate change canada

OUR INSPIRATION - 1989

Milli Vanilli had a hit song "Blame it on the Rain" in 1989 - it was number one for 2 weeks on the U.S. Billboard Hot 100 ! And why not?  It had :

1) Phat beat with that Roland TR-808 groove in the back of the mix with tasty cowbell tinkles - who doesn't need more cowbell from an iconic analog beat box?

2) Catchy lyrics per this excerpt:


Gotta blame it on something
Gotta blame it on something
Blame it on the rain (rain)
Blame it on the stars (stars)
Whatever you do don't put the blame on you
Blame it on the rain yeah yeah

3) High production promotion with a couple of 'singers' delivering it all.

As we all know now, the 'singers' we all saw weren't singing at all, but just lip syncing to recorded tracks telling us to "Blame it on the Rain" because we gotta blame it on something.

OUR NOMINEES - 2015

In honour of Milli Vanilli, CityFloodMap.Com now announces the Milli Vanilli Meteorology Award nominees - those who, with little substance "Blame it on the Rain" when it comes to weather science, extreme value statistics, flood risk assessment, and flood damage reduction policy.  TR-808 drum roll please ...... and the 2015 nominees are:

#1 (Acting) Environment Commissioner of Ontario
Connecting The Dots on Climate Data in Ontario, Toronto, January 8, 2015, The Environmental  Commissioner's Eco Climate Data Roundtable for saying :



"But now “1-in-100 year” storms, which are often the threshold for resilient design, are happening more frequently than in the past." (per summary brochure)

See full details:

Why this is a worthy nominee:

Coles Notes: Environment Canada states there has been no significant change in rainfall over decades. Also old systems built pre-1980's to 1-in-5 year storm level of service will continue to flood as they always have - rain is not more frequent as the data clearly shows.  Runoff has increased though in our cities and watersheds.  And flow conveyance systems are more constrained resulting in more frequent back-ups and damage.

*****

#2 (Acting) Environment Commissioner of Ontario
Feeling the Heat: 2015 Annual Greenhouse Gas Progress Report, July 7, 2015 for saying:



"The report notes that extreme weather associated with climate change has already damaged the province’s infrastructure; for example, intense storms and flash floods in recent years have caused costly damage to provincial roadways and commuter rail lines. And future projections for the province point to an even more unpredictable and unstable climate."  (per release document)

See full details:


Coles Notes:  This GO Train rail line area has always flooded, with records going back to the "Great Flood" on September 13, 1878. But the watershed hydrology has changed and there is more runoff than during the 1981 flood inquiry that noted during the March 21, 1980 flood "Part of the CNR track flooded to the north and east of a point south of Bloor Street."  During the April 14, 1980 flood, after a 5-6 hour period of rain, CNR tracks at the Bloor Street ramp were flooded.  The inquiry report indicates that train operation has halted, or trains were detoured during floods, including December 25, 1979, January 11, 1980, March 21, 1980, April 14, 1980, February 11, 1981 and May 11, 1981. Lack of recent Keating Channel dredging may reduce flow capacity of the river system, aggravating flood risks. SO DREDGE THE CHANNEL! IT'S LIKE A METAMUCIL FLUSH FOR FLOOD PREVENTION!

WAKE UP! The May 29, 2013 flood was worse - higher recorded water level at Todmorden gauge, higher flow rate than July 8, 2013 - but luckily missed trains due to the schedule.

*****

#3 Insurance Bureau of Canada
Municipal Risk Assessment Tool & Telling the Weather Story for saying:

"Extreme weather events that used to happen every 40 years now occur every 6 years. IBC is piloting ground-breaking technology – a tool known as MRAT – to help communities reduce flooding caused by sewer backups....How Does MRAT Fight Urban Flooding? Canada’s weather is changing and it’s hurting communities...." (per IBC website)

See full details:
(well you can't because MRAT has some proprietary information, but you can read about the source of the statement in IBC's Telling the Weather Story in our link below)

Why this is a worthy nominee:

Coles Notes: IBC`s report misreports a theoretical normal bell curve shift for temperature changes as actual Environment Canada weather data and then misreports weather to mean extreme rainfall.


Honourable mentions include those who have repeated the IBC statement that storms that used to occur every 40 years occur every 6 years now, including:

Institute for Catastrophic Loss Reduction
Craig Alexander - TD Economics
thestar.com
cbcnews.ca
Canadian Chamber of Commerce
The Tree - Content for Energy and Climate Communicators
Columbia Institute Centre for Civic Governance
Civic Action
Calgary Sun
CanadianUnderwriter.ca
Aviva Canada

*****

Gotta Blame Flooding on Something? And not the rain?  Here you go:

Our letter to the Minister of the Environment of Ontario has some ideas:

Our research into overland flood risk factors is has some ideas as well:

Overall, instead of blaming it on the rain, look to runoff / hydrology changes in our watersheds and urban catchments, and at flow / hydraulics in drainage infrastructure, including the neglected overland flow system.  See the post below on Rain-Runoff-Flow-Flood.

                                                                            *****

Extreme rainfall trends in Canada (Environment Canada Engineering Climate Datasets):
Static Maps: http://www.cityfloodmap.com/2015/12/severe-storm-trends-canada-rainfall.html
Interactive Map: http://www.cityfloodmap.com/2015/12/canadian-extreme-rainfall-map-climate.html
Table Summaries: http://www.cityfloodmap.com/2015/12/canadian-extreme-rainfall-summary-by.html
Chart and Table: http://www.cityfloodmap.com/2015/12/top-weather-story-in-canada-2015-less.html
Long-term Station Table: http://www.cityfloodmap.com/2015/12/long-term-climate-change-short-term.html
Environment Canada Denies Changes: http://www.cityfloodmap.com/2015/10/bogus-statements-on-storms-in-cbcnewsca.html
Contradicting Insurance Industry Claims: http://www.cityfloodmap.com/2015/12/trends-in-canadian-shortduration.html

***

It is noted that the ECO in the 2014 report Looking for Leadership, The Costs of Climate Inaction has repeated the "Weather Story" statement saying:

"For example, the Insurance Bureau of Canada estimates that extreme storms of a magnitude expected to happen every 40 years are now predicted to occur every six years."

Why Flood Damages Are Increasing in Urban Areas in Canada

The important factors that explain why urban flood damages are increasing in Canada.
The only houses that flood directly because of Rain do not have a roof - not many.  Floods occurs because of the Flow of Runoff, not Rain.

Rain intensities are not increasing in Canada, on average, or to any statistically significant degree, in relation to urban flooding (short duration intensities, as opposed to number of days with rain through the year).

Rain turns into Runoff and is influenced by land use development patterns and any mitigation measures that control runoff (stormwater management).  Hydrology ([hahy-drol-uh-jee]) is the study of the rain-runoff transformations.  Stormwater management is a specialized field of Civil Engineering.  Runoff is increasing in urban areas through intensification.

Runoff turns into Flow as it is collected and concentrated in urban infrastructure, or conveyance systems (sewers, overland flow routes).  As Runoff has increased, so has flow, sometimes despite earlier mitigation efforts.

When Flow exceeds the conveyance systems capacity (Rain is above the designed level of service, or Flow capacity is reduced), collected Runoff backs-up, surcharges or spills into homes, causing Floods.  Sometimes, modifications to the conveyance system for environmental protection (prevent sewage splils) reduce capacity and contribute to Floods.

****
Interested in reading more detail?

Rain storm intensity not increasing shows how junk reporting has metastasized through media, economic reports and policy statements, ignoring and misrepresenting Environment Canada data

Rain - cbc news reports bogus insurance industry claim on increasing storm frequency shows that no fact checking occurs when reporting even the most outrageous claims on insurance flood damages (i.e, that there are 20 times more storms now)

Runoff and Flow - Go Train flooding not new per 1981 provincial inquiry highlights incorrect explanation of recent rail flood damages by climate change, as explained decades ago to Premier Davis using science and engineering principles like runoff hydrology (Don Watershed development) and flow hydraulics (Keating Channel dredging)

Flow -  Toronto overland flow factors affect flood risk includes recommendations on urban flood hazard management, backed up by informative new overland flood risk mapping.  Given this exposed correlation of historical basement flooding incidents and overland flow risks, you would be right to question whether insurance companies have indirectly, inadvertently insured overland flood risk in conventional sewer back-up policies. Flow is a continuum from flood plains to floor drains, whether property insurance policies try to make a distinction or not.

 And Connecting dots on climate change shows how infographics and anecdotes have replaced data and statistics in the myopic explanation of flooding that points to climate change, and ignores factors in the rainfall-runoff process (watershed development, stormwater management), and runoff conveyance (infrastructure design and operation) and ignores Environment Canada rain data.